Content deleted Content added
fields medal |
mNo edit summary |
||
Line 180:
{{harvtxt|Duffin|Schaeffer|1941}} proved a generalization of Khinchin's result, and posed what is now known as the [[Duffin–Schaeffer conjecture]] on the analogue of Khinchin's dichotomy for general, not necessarily decreasing, sequences <math>\psi</math> . {{harvtxt|Beresnevich|Velani|2006}} proved that a [[Hausdorff measure]] analogue of the Duffin–Schaeffer conjecture is equivalent to the original Duffin–Schaeffer conjecture, which is a priori weaker.
In July 2019, [[Dimitris Koukoulopoulos]] and [[James Maynard (mathematician)|James Maynard]] announced a proof of the conjecture.<ref>{{cite arXiv |first1=D. |last1=Koukoulopoulos |first2=J. |last2=Maynard |title=On the Duffin–Schaeffer conjecture |year=2019 |class=math.NT |eprint=1907.04593 }}</ref><ref>{{cite journal |last=Sloman |first=Leila |year=2019 |title=New Proof Solves 80-Year-Old Irrational Number Problem |journal=[[Scientific American]] |url=https://www.scientificamerican.com/article/new-proof-solves-80-year-old-irrational-number-problem/ }}</ref>
=== Hausdorff dimension of exceptional sets ===
|