Computational complexity of matrix multiplication: Difference between revisions

Content deleted Content added
m Lower bounds for ω: task, replaced: Thirty-fourth → Thirty-Fourth
Citation bot (talk | contribs)
Alter: title, journal. Add: isbn, page, arxiv, doi, chapter, s2cid, date, authors 1-1. Removed proxy/dead URL that duplicated identifier. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Headbomb | #UCB_toolbar
Line 29:
| title = 32nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2021)
|url=https://www.siam.org/conferences/cm/program/accepted-papers/soda21-accepted-papers
}}</ref><ref>{{Cite web|last=Hartnett|first=Kevin|title=Matrix Multiplication Inches Closer to Mythic Goal|url=https://www.quantamagazine.org/mathematicians-inch-closer-to-matrix-multiplication-goal-20210323/|access-date=2021-04-01|website=Quanta Magazine|date=23 March 2021 |language=en}}</ref> However, this and similar improvements to Strassen are not used in practice, because they are [[galactic algorithm]]s: the constant coefficient hidden by the [[Big O notation]] is so large that they are only worthwhile for matrices that are too large to handle on present-day computers.<ref>{{citation
| last = Iliopoulos
| first = Costas S.
Line 163:
| 1990 || 2.3755 || [[Don Coppersmith|Coppersmith]], [[Shmuel Winograd|Winograd]]<ref>
{{cite journal
| url=https://www.sciencedirect.com/science/article/pii/S0747717108800132
| author1=D. Coppersmith
| author2= S. Winograd
Line 198 ⟶ 197:
| pages=887&ndash;898
| year=2012
| s2cid=14350287
}}</ref><ref name="Williams.2014">
{{cite report
| last=Williams
Line 214:
| first1=François
| pages=296&ndash;303
| contribution=Powers of tensors and fast matrix multiplication
| year = 2014
| arxiv=1401.7714
| title = Proceedings of the 39th [[International Symposium on Symbolic and Algebraic Computation]] (- ISSAC) '14
| contributionchapter=PowersAlgebraic ofcomplexity tensorstheory and fast matrix multiplication
| doi=10.1145/2608628.2627493
| editor=Katsusuke Nabeshima
| isbn=978-1-4503-2501-1
| bibcode=2014arXiv1401.7714L
| s2cid=2597483
}}</ref>
|-
| 2020 || 2.3728596 || Alman, [[Virginia Vassilevska Williams|Williams]]<ref name="aw20"/>
Line 230 ⟶ 232:
Using a naive lower bound and schoolbook matrix multiplication for the upper bound, one can straightforwardly conclude that {{math|2 ≤ ω ≤ 3}}. Whether {{math|1=ω = 2}} is a major open question in [[theoretical computer science]], and there is a line of research developing matrix multiplication algorithms to get improved bounds on {{math|ω}}.
 
The current best bound on {{math|ω}} is {{math|ω < 2.3728596}}, by Josh Alman and [[Virginia Vassilevska Williams]].<ref name="aw20"/> This algorithm, like all other recent algorithms in this line of research, uses the ''laser method'', a generalization of the Coppersmith–Winograd algorithm, which was given by [[Don Coppersmith]] and [[Shmuel Winograd]] in 1990 and was the best matrix multiplication algorithm until 2010.<ref name="coppersmith">{{Citation|doi=10.1016/S0747-7171(08)80013-2 |title=Matrix multiplication via arithmetic progressions |url=http://www.cs.umd.edu/~gasarch/TOPICS/ramsey/matrixmult.pdf |year=1990 |last1=Coppersmith |first1=Don |last2=Winograd |first2=Shmuel |journal=Journal of Symbolic Computation |volume=9|issue=3|pages=251|doi-access=free }}</ref> The conceptual idea of these algorithms are similar to Strassen's algorithm: a way is devised for multiplying two {{math|''k'' × ''k''}}-matrices with fewer than {{math|''k''<sup>3</sup>}} multiplications, and this technique is applied recursively. The laser method has limitations to its power, and cannot be used to show that {{math|ω < 2.3725}}.<ref>{{Cite journal|lastlast1=Ambainis|firstfirst1=Andris|last2=Filmus|first2=Yuval|last3=Le Gall|first3=François|date=2015-06-14|title=Fast Matrix Multiplication: Limitations of the Coppersmith-Winograd Method|url=https://doi.org/10.1145/2746539.2746554|journal=Proceedings of the fortyForty-seventh annualAnnual ACM symposiumSymposium on Theory of Computing|series=STOC '15|___location=Portland, Oregon, USA|publisher=Association for Computing Machinery|pages=585–593|doi=10.1145/2746539.2746554|arxiv=1411.5414 |isbn=978-1-4503-3536-2|s2cid=8332797 }}</ref>
 
=== Group theory reformulation of matrix multiplication algorithms ===
 
[[Henry Cohn]], [[Robert Kleinberg]], [[Balázs Szegedy]] and [[Chris Umans]] put methods such as the Strassen and Coppersmith–Winograd algorithms in an entirely different [[group theory|group-theoretic]] context, by utilising triples of subsets of finite groups which satisfy a disjointness property called the [[Triple product property|triple product property (TPP)]]. They also give conjectures that, if true, would imply that there are matrix multiplication algorithms with essentially quadratic complexity. This implies that the optimal exponent of matrix multiplication is 2, which most researchers believe is indeed the case.<ref name="robinson"/> One such conjecture is that families of [[wreath product]]s of [[Abelian group]]s with symmetric groups realise families of subset triples with a simultaneous version of the TPP.<ref>{{Cite book | last1 = Cohn | first1 = H. | last2 = Kleinberg | first2 = R. | last3 = Szegedy | first3 = B. | last4 = Umans | first4 = C. | chapter = Group-theoretic Algorithms for Matrix Multiplication | doi = 10.1109/SFCS.2005.39 | title = 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05) | pages = 379 | year = 2005 | isbn = 0-7695-2468-0 | s2cid = 41278294 | url = https://authors.library.caltech.edu/23966/ }}</ref><ref>Henry Cohn, Chris Umans. A Group-theoretic Approach to Fast Matrix Multiplication. {{arxiv|math.GR/0307321}}. ''Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science'', 11–14 October 2003, Cambridge, MA, IEEE Computer Society, pp.&nbsp;438–449.</ref> Several of their conjectures have since been disproven by Blasiak, Cohn, Church, Grochow, Naslund, Sawin, and Umans using the Slice Rank method.<ref>{{Cite book | last1 = Blasiak | first1 = J. | last2 = Cohn | first2 = H. | last3 = Church | first3 = T. | last4 = Grochow | first4 = J. | last5 = Naslund | first5= E. | last6 = Sawin | first6 = W. | last7=Umans | first7= C.| chapter= On cap sets and the group-theoretic approach to matrix multiplication | doi = 10.19086/da.1245 | title = Discrete Analysis | year = 2017 | page = 1245 | s2cid = 9687868 | url = http://discreteanalysisjournal.com/article/1245-on-cap-sets-and-the-group-theoretic-approach-to-matrix-multiplication}}</ref> Further, Alon, Shpilka and [[Chris Umans]] have recently shown that some of these conjectures implying fast matrix multiplication are incompatible with another plausible conjecture, the [[sunflower conjecture]].<ref>[[Noga Alon|Alon]], Shpilka, Umans, [http://eccc.hpi-web.de/report/2011/067/ On Sunflowers and Matrix Multiplication]</ref>
 
=== Lower bounds for ω ===
Line 242 ⟶ 244:
=== Rectangular matrix multiplication ===
 
Similar techniques also apply to rectangular matrix multiplication. The central object of study is <math>\omega(k)</math>, which is the smallest <math>c</math> such that one can multiply a matrix of size <math>n\times \lceil n^k\rceil</math> with a matrix of size <math>\lceil n^k\rceil \times n</math> with <math>O(n^{c + o(1)})</math> arithmetic operations. A result in algebraic complexity states that multiplying matrices of size <math>n\times \lceil n^k\rceil</math> and <math>\lceil n^k\rceil \times n</math> requires the same number of arithmetic operations as multiplying matrices of size <math>n\times \lceil n^k\rceil</math> and <math>n \times n</math> and of size <math>n \times n</math> and <math>n\times \lceil n^k\rceil</math>, so this encompasses the complexity of rectangular matrix multiplication.<ref name="gall18">{{Citation|lastlast1=Gall|firstfirst1=Francois Le|title=Improved Rectangular Matrix Multiplication using Powers of the Coppersmith-Winograd Tensor|date=2018-01-01|url=https://epubs.siam.org/doi/10.1137/1.9781611975031.67|work=Proceedings of the 2018 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)|pages=1029–1046|series=Proceedings|publisher=Society for Industrial and Applied Mathematics|doi=10.1137/1.9781611975031.67|access-date=2021-05-23|last2=Urrutia|first2=Florent|arxiv=1708.05622|isbn=978-1-61197-503-1 |s2cid=33396059 }}</ref> This generalizes the square matrix multiplication exponent, since <math>\omega(1) = \omega</math>.
 
Of interest is proving that, for values of ''k'' between 0 and 1, that <math>\omega(k) \leq 2</math>.
Since the output of the matrix multiplication problem is size <math>n^2</math>, <math>\omega(k) \geq 2</math> always, so these results show that <math>\omega(k) = 2</math> exactly. The largest ''k'' such that <math>\omega(k) = 2</math> is known as the ''dual matrix multiplication exponent'', usually denoted ''α''. ''α'' is referred to as the "[[Duality (optimization)|dual]]" because showing that <math>\alpha = 1</math> is equivalent to showing that <math>\omega = 2</math>. Like the matrix multiplication exponent, the dual matrix multiplication exponent sometimes appears in the complexity of algorithms in numerical linear algebra and optimization.<ref>{{Cite journal|lastlast1=Cohen|firstfirst1=Michael B.|last2=Lee|first2=Yin Tat|last3=Song|first3=Zhao|date=2021-01-05|title=Solving Linear Programs in the Current Matrix Multiplication Time|url=https://doi.org/10.1145/3424305|journal=Journal of the ACM|volume=68|issue=1|pages=3:1–3:39|doi=10.1145/3424305|issn=0004-5411|arxiv=1810.07896|s2cid=231955576 }}</ref>
 
The first bound on ''α'' is by [[Don Coppersmith|Coppersmith]] in 1982, who showed that <math>\alpha > 0.17227</math>.<ref>{{Cite journal|last=Coppersmith|first=D.|date=1982-08-01|title=Rapid Multiplication of Rectangular Matrices|url=https://epubs.siam.org/doi/10.1137/0211037|journal=SIAM Journal on Computing|volume=11|issue=3|pages=467–471|doi=10.1137/0211037|issn=0097-5397}}</ref> The current best bound on ''α'' is <math>\alpha > 0.31389</math>, given by Le Gall and Urrutia.<ref>{{Citation|lastlast1=Le Gall|firstfirst1=Francois|title=Improved Rectangular Matrix Multiplication using Powers of the Coppersmith-Winograd Tensor|date=2018-01-01|url=https://epubs.siam.org/doi/10.1137/1.9781611975031.67|work=Proceedings of the 2018 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)|pages=1029–1046|series=Proceedings|publisher=Society for Industrial and Applied Mathematics|doi=10.1137/1.9781611975031.67|access-date=2021-05-23|last2=Urrutia|first2=Florent|arxiv=1708.05622|isbn=978-1-61197-503-1 |s2cid=33396059 }}</ref> This paper also contains bounds on <math>\omega(k)</math>.
 
==Related complexities==