Lattice Boltzmann methods for solids: Difference between revisions

Content deleted Content added
Tmaquart (talk | contribs)
No edit summary
Tmaquart (talk | contribs)
No edit summary
Line 22:
 
==== Introduction ====
This idea consists of introducing a modified version of the forcing term<ref name="guo2002force"/> into the LBM as a stress divergence force. This force is considered space-time dependent and contains solid properties<ref group="Note" name="notesolidproperties"/>.:
 
::<math>\vec{g} = \frac{1}{\rho} \mathbf{\nabla}_{x} \cdot \overline{\overline{\sigma}}</math>,
 
where <math>\overline{\overline{\sigma}}</math> denotes the [[cauchy stress tensor]]. <math>\vec{g}</math> and <math>\rho</math> are respectively the gravity vector and solid matter density. Stress tensor is usually computed accross the lattice aiming [[Finite difference method|finite difference schemes]].
 
==== Some results ====