Schwarz triangle function: Difference between revisions

Content deleted Content added
Formula: clarify ideal triangle case
move derivation-related text
Line 4:
{{Complex analysis sidebar}}
In [[complex analysis]], the '''Schwarz triangle function''' or '''Schwarz s-function''' is a function that [[conformal mapping|conformally maps]] the [[upper half plane]] to a triangle in the upper half plane having lines or circular arcs for edges. The target triangle is not necessarily a [[Schwarz triangle]], although that case is the most mathematically interesting.
 
Through the theory of complex [[ordinary differential equation]]s with [[regular singular point]]s and the [[Schwarzian derivative]], the triangle function can be expressed as the quotient of two solutions of a [[hypergeometric differential equation]] with real coefficients and singular points at 0, 1 and ∞. By the [[Schwarz reflection principle]], the reflection group induces an action on the two dimensional space of solutions. On the orientation-preserving normal subgroup, this two-dimensional representation corresponds to the [[monodromy]] of the ordinary differential equation and induces a group of [[Möbius transformation]]s on quotients of [[hypergeometric function]]s.
 
==Formula==
Line 24 ⟶ 22:
 
===Derivation===
This formula can be derived using the [[Schwarzian derivative]]. Through the theory of complex [[ordinary differential equation]]s with [[regular singular point]]s and the [[Schwarzian derivative]], the triangle function can be expressed as the quotient of two solutions of a [[hypergeometric differential equation]] with real coefficients and singular points at 0, 1 and ∞. By the [[Schwarz reflection principle]], the reflection group induces an action on the two dimensional space of solutions. On the orientation-preserving normal subgroup, this two-dimensional representation corresponds to the [[monodromy]] of the ordinary differential equation and induces a group of [[Möbius transformation]]s on quotients of [[hypergeometric function]]s.
This formula can be derived using the [[Schwarzian derivative]].
 
== Singular points ==