Content deleted Content added
→Properties: Added short two-line proof of convexity |
|||
Line 47:
==Properties==
:<math>
▲Every sublinear function is a [[convex function]].
\begin{align}
p(t x + (1 - t) y)
&\leq p(t x) + p((1 - t) y) & \text{subadditivity} \\
&= t p(x) + (1 - t) p(y) & \text{nonnegative homogeneity}
\end{align}
</math>
If <math>p : X \to \R</math> is a sublinear function on a vector space <math>X</math> then<ref group=proof>If <math>x \in X</math> and <math>r := 0</math> then nonnegative homogeneity implies that <math>p(0) = p(r x) = r p(x) = 0 p(x) = 0.</math> Consequently, <math>0 = p(0) = p(x + (-x)) \leq p(x) + p(-x),</math> which is only possible if <math>0 \leq \max \{p(x), p(- x)\}.</math> <math>\blacksquare</math></ref>{{sfn|Narici|Beckenstein|2011|pp=120-121}}
|