Content deleted Content added
Joel Brennan (talk | contribs) →Universal property: changed "multiplicative semigroup" to "multiplicative monoid" |
sfn fix, correct cite for Atiyah/Macdonald |
||
Line 78:
''Properties to be moved in another section''
*Localization commutes with formations of finite sums, products, intersections and radicals;<ref>{{harvnb|Atiyah|
::<math>\sqrt{I} \cdot S^{-1}R = \sqrt{I \cdot S^{-1}R}\,.</math>
:In particular, ''R'' is [[reduced ring|reduced]] if and only if its total ring of fractions is reduced.<ref>Borel, AG. 3.3</ref>
Line 148:
is an isomorphism. If <math>M</math> is a [[finitely presented module]], the natural map
:<math>S^{-1} \operatorname{Hom}_R (M, N) \to \operatorname{Hom}_{S^{-1}R} (S^{-1}M, S^{-1}N)</math>
is also an isomorphism.<ref>{{harvnb|Eisenbud|1995|loc=Proposition 2.10}}</ref>
If a module ''M'' is a [[finitely generated module|finitely generated]] over ''R'', one has
:<math>S^{-1}(\operatorname{Ann}_R(M)) = \operatorname{Ann}_{S^{-1}R}(S^{-1}M),</math>
where <math>\operatorname{Ann}</math> denotes [[annihilator (ring theory)|annihilator]], that is the ideal of the elements of the ring that map to zero all elements of the module.<ref>{{harvnb|Atiyah|
:<math>S^{-1} M = 0\quad \iff \quad S\cap \operatorname{Ann}_R(M) \ne \emptyset,</math>
that is, if <math>t M = 0</math> for some <math>t \in S.</math><ref>Borel, AG. 3.1</ref>
Line 199:
{{refbegin}}
* {{Cite book|last1=Atiyah|first1=Michael
*[[Armand Borel|Borel, Armand]]. Linear Algebraic Groups (2nd ed.). New York: Springer-Verlag. {{ISBN|0-387-97370-2}}.
* {{cite book|last=Cohn|first=P. M.|title=Algebra |volume=2|edition=2nd |year=1989|publisher=John Wiley & Sons Ltd|___location=Chichester|pages=xvi+428|chapter=§ 9.3|isbn=0-471-92234-X |mr=1006872 }}
|