Content deleted Content added
No edit summary |
No edit summary |
||
Line 149:
==Inhomogeneous Poisson point process==
[[File:Inhomogeneouspoissonprocess.svg|thumb|Graph of an inhomogeneous Poisson point process on the real line. The events are marked with black crosses, the time-dependent rate <math> \lambda(t) </math> is given by the function marked red.]]
The '''inhomogeneous''' or '''nonhomogeneous''' '''Poisson point process''' (see [[#Terminology|Terminology]]) is a Poisson point process with a Poisson parameter set as some ___location-dependent function in the underlying space on which the Poisson process is defined. For Euclidean space <math>\textstyle \textbf{R}^d</math>, this is achieved by introducing a locally integrable positive function <math>\lambda\colon\mathbb{R}^d\to[0,\infty)</math>, such that for
:<math> \Lambda (B)=\int_B \lambda(x)\,\mathrm dx < \infty, </math>
where <math>\textstyle{\mathrm dx}</math> is a (<math>\textstyle d</math>-dimensional) volume element,{{efn|Instead of <math>\textstyle \lambda(x)</math> and <math>\textstyle{\mathrm d}x</math>, one could write, for example, in (two-dimensional) polar coordinates <math>\textstyle \lambda(r,\theta)</math> and <math display="inline"> r\,dr\,d\theta</math> , where <math>\textstyle r</math> and <math>\textstyle \theta</math> denote the radial and angular coordinates respectively, and so <math>\textstyle{\mathrm d}x</math> would be an area element in this example.}} then for
:<math> \Pr \{N(B_i)=n_i, i=1, \dots, k\}=\prod_{i=1}^k\frac{(\Lambda(B_i))^{n_i}}{n_i!} e^{-\Lambda(B_i)}. </math>
Line 370:
:<math> G(v)=\operatorname E \left[\prod_{x\in N} v(x) \right] </math>
where the product is performed for all the points in <math display=inline>
:<math> G(v)=e^{-\int_{\textbf{R}^d} [1-v(x)]\,\Lambda(\mathrm dx)}, </math>
|