Content deleted Content added
I added explanation of how the exchange potential changes in the presence of spin polarization |
m v2.05b - Bot T20 CW#61 - Fix errors for CW project (Reference before punctuation) |
||
Line 68:
:<math>v_{\rm xc}^{\mathrm{LDA}}(\mathbf{r}) = \frac{\delta E^{\mathrm{LDA}}}{\delta\rho(\mathbf{r})} = \epsilon_{\rm xc}(\rho(\mathbf{r})) + \rho(\mathbf{r})\frac{\partial \epsilon_{\rm xc}(\rho(\mathbf{r}))}{\partial\rho(\mathbf{r})}\ .</math>
In finite systems, the LDA potential decays asymptotically with an exponential form. This result is in error; the true exchange-correlation potential decays much slower in a Coulombic manner. The artificially rapid decay manifests itself in the number of Kohn–Sham orbitals the potential can bind (that is, how many orbitals have energy less than zero). The LDA potential can not support a Rydberg series and those states it does bind are too high in energy. This results in the highest occupied molecular orbital ([[HOMO]]) energy being too high in energy, so that any predictions for the [[ionization potential]] based on [[Koopmans' theorem]] are poor. Further, the LDA provides a poor description of electron-rich species such as [[anion]]s where it is often unable to bind an additional electron, erroneously predicating species to be unstable.<ref>{{cite book|last=Fiolhais|first=Carlos|author2=Nogueira, Fernando |author3=Marques Miguel |title=A Primer in Density Functional Theory|publisher=Springer|year=2003|isbn=978-3-540-03083-6|page=60}}</ref> In the case of spin polarization, the exchange-correlation potential acquires spin indices. However, if one only considers the exchange part of the exchange-correlation, one obtains a potential that is diagonal in spin indices
<math>v_{\rm xc, \alpha \beta}^{\mathrm{LDA}}(\mathbf{r}) = \frac{\delta E^{\mathrm{LDA}}}{\delta\rho_{\alpha \beta}(\mathbf{r})} =
|