FAIR data: Difference between revisions

Content deleted Content added
the accessibility wp page doesn't really refer to the type of accessibility relevant here
Citation bot (talk | contribs)
Add: bibcode, arxiv, pmid, s2cid, authors 1-1. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Whoop whoop pull up | #UCB_webform 1138/3754
Line 89:
In January 2020, representatives of nine groups of universities around the world produced the ''Sorbonne declaration on research data rights'',<ref>[https://sorbonnedatadeclaration.eu/ Sorbonne Declaration on Research Data Rights], Jan 27 2020</ref> which included a commitment to FAIR data, and called on governments to provide support to enable it.<ref>[https://www.timeshighereducation.com/news/open-data-tougher-open-access-and-needs-mindset-change Open data 'tougher' than open access and needs 'mindset change'], [[Times Higher Education]], January 31 2020</ref>
 
In 2021, researchers identified the FAIR principles as a conceptual component of data catalog software tools, with the other components being metadata management, business context and data responsibility roles.<ref>{{Citation |lastlast1=Ehrlinger |firstfirst1=Lisa |title=Data Catalogs: A Systematic Literature Review and Guidelines to Implementation |date=2021 |url=https://link.springer.com/10.1007/978-3-030-87101-7_15 |work=Database and Expert Systems Applications - DEXA 2021 Workshops |volume=1479 |pages=148–158 |editor-last=Kotsis |editor-first=Gabriele |place=Cham |publisher=Springer International Publishing |language=en |doi=10.1007/978-3-030-87101-7_15 |isbn=978-3-030-87100-0 |access-date=2022-06-26 |last2=Schrott |first2=Johannes |last3=Melichar |first3=Martin |last4=Kirchmayr |first4=Nicolas |last5=Wöß |first5=Wolfram |s2cid=237621026 |editor2-last=Tjoa |editor2-first=A Min |editor3-last=Khalil |editor3-first=Ismail |editor4-last=Moser |editor4-first=Bernhard}}</ref>
 
In April 2022, Matthias Scheffler and colleagues argued in ''[[Nature (journal)|Nature]]'' that FAIR principles are "a must" so that [[data mining]] and [[artificial intelligence]] can extract useful scientific information from the data.<ref>{{Cite journal |lastlast1=Scheffler |firstfirst1=Matthias |last2=Aeschlimann |first2=Martin |last3=Albrecht |first3=Martin |last4=Bereau |first4=Tristan |last5=Bungartz |first5=Hans-Joachim |last6=Felser |first6=Claudia |last7=Greiner |first7=Mark |last8=Groß |first8=Axel |last9=Koch |first9=Christoph T. |last10=Kremer |first10=Kurt |last11=Nagel |first11=Wolfgang E. |date=2022-04-28 |title=FAIR data enabling new horizons for materials research |url=https://www.nature.com/articles/s41586-022-04501-x |journal=Nature |language=en |volume=604 |issue=7907 |pages=635–642 |doi=10.1038/s41586-022-04501-x |pmid=35478233 |arxiv=2204.13240 |bibcode=2022Natur.604..635S |s2cid=248415511 |issn=0028-0836}}</ref>
 
==See also==