Content deleted Content added
m Typo/general fixes, replaced: a.k.a → a.k.a. |
Citation bot (talk | contribs) Alter: journal, title. Add: year, s2cid, authors 1-1. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by SemperIocundus | #UCB_webform 1324/2500 |
||
Line 1:
'''Secure two-party computation''' (2PC) a.k.a. '''Secure function evaluation''' is sub-problem of [[secure multi-party computation]] (MPC) that has received special attention by researchers because of its close relation to many [[cryptographic]] tasks.<ref>{{Citation |
[[Andrew Yao|Yao]]'s [[garbled circuit protocol]] for two-party computation only provided security against passive adversaries.<ref>{{Cite book |last1=Yao |first1=A. C. |title=23rd Annual Symposium on Foundations of Computer Science (sfcs 1982) |year=1982 |pages=160–164 |chapter=Protocols for secure computations |doi=10.1109/SFCS.1982.38 |s2cid=206558698}}</ref> One of the first general solutions for achieving security against active adversary was introduced by Goldreich, Micali and Wigderson<ref>{{Cite journal|last1=Goldreich|first1=O.|last2=Micali|first2=S.|last3=Wigderson|first3=A.|date=1987-01-01|title=How to play ANY mental game|url=https://doi.org/10.1145/28395.28420|journal=Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing|series=STOC '87|___location=New York, New York, USA|publisher=Association for Computing Machinery|pages=218–229|doi=10.1145/28395.28420|isbn=978-0-89791-221-1|s2cid=6669082 }}</ref> by applying Zero-Knowledge Proof to enforce semi-honest behavior.<ref>{{Cite journal |last1=Goldwasser |first1=S |last2=Micali |first2=S |last3=Rackoff |first3=C |date=1985-12-01 |title=The knowledge complexity of interactive proof-systems |url=https://doi.org/10.1145/22145.22178 |journal=Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing |series=STOC '85 |___location=Providence, Rhode Island, USA |publisher=Association for Computing Machinery |pages=291–304 |doi=10.1145/22145.22178 |isbn=978-0-89791-151-1|s2cid=8689051 }}</ref> This approach was known to be impractical for years due to high complexity overheads. However, significant improvements have been made toward applying this method in 2PC and Abascal, Faghihi Sereshgi, Hazay, Yuval Ishai and Venkitasubramaniam gave the first efficient protocol based on this approach.<ref>{{Cite journal|last1=Abascal|first1=Jackson|last2=Faghihi Sereshgi|first2=Mohammad Hossein|last3=Hazay|first3=Carmit|last4=Ishai|first4=Yuval|last5=Venkitasubramaniam|first5=Muthuramakrishnan|date=2020-10-30|title=Is the Classical GMW Paradigm Practical? The Case of Non-Interactive Actively Secure 2PC|url=https://doi.org/10.1145/3372297.3423366|journal=Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security|series=CCS '20|___location=Virtual Event, USA|publisher=Association for Computing Machinery|pages=1591–1605|doi=10.1145/3372297.3423366|isbn=978-1-4503-7089-9|s2cid=226228208 }}</ref> Another type of 2PC protocols that are secure against active adversaries were proposed by Yehuda Lindell and Benny Pinkas,<ref>{{Cite book | last1 = Lindell | first1 = Y. | title = Advances in Cryptology - EUROCRYPT 2007 | last2 = Pinkas | first2 = B. | doi = 10.1007/978-3-540-72540-4_4 | volume = 4515 | pages = 52–78 | year = 2007 | series = Lecture Notes in Computer Science | isbn = 978-3-540-72539-8 }}</ref> Ishai, Manoj Prabhakaran and [[Amit Sahai]]<ref>{{Cite book |last1=Ishai |first1=Y. |title=Advances in Cryptology – CRYPTO 2008 |last2=Prabhakaran |first2=M. |last3=Sahai |first3=A. |year=2008 |isbn=978-3-540-85173-8 |series=Lecture Notes in Computer Science |volume=5157 |pages=572–591 |doi=10.1007/978-3-540-85174-5_32}}</ref> and Jesper Buus Nielsen and Claudio Orlandi.<ref>{{Cite book | last1 = Nielsen | first1 = J. B. | last2 = Orlandi | first2 = C. | doi = 10.1007/978-3-642-00457-5_22 | chapter = LEGO for Two-Party Secure Computation | title = Theory of Cryptography | series = Lecture Notes in Computer Science | volume = 5444 | pages = 368–386 | year = 2009 | isbn = 978-3-642-00456-8 | citeseerx = 10.1.1.215.4422 }}</ref> Another solution for this problem, that explicitly works with committed input was proposed by Stanisław Jarecki and Vitaly Shmatikov.<ref>{{Cite book | last1 = Jarecki | first1 = S. | title = Advances in Cryptology - EUROCRYPT 2007 | last2 = Shmatikov | first2 = V. | doi = 10.1007/978-3-540-72540-4_6 | volume = 4515 | pages = 97–114 | year = 2007 | series = Lecture Notes in Computer Science | isbn = 978-3-540-72539-8 }}</ref>
== Secure multi-party computation ==
Line 7:
==Security==
The security of a two-party computation protocol is usually defined through a comparison with an idealised scenario that is secure by definition.<ref>{{Cite journal |
==See also==
|