Content deleted Content added
Citation bot (talk | contribs) Add: arxiv, authors 1-1. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Abductive | #UCB_webform 1628/3850 |
Citation bot (talk | contribs) Add: eprint, class. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Abductive | #UCB_webform 1628/3850 |
||
Line 5:
== Memory hard measure ==
There are different ways to measure the memory hardness of a function, and a commonly seen measure is Cumulative Memory Complexity (CMC). In a parallel model, CMC is the sum of the memory required to compute a function over every time step of the computation.<ref>(AS15) Alwen, Serbineko, [https://eprint.iacr.org/2014/238.pdf ''High Parallel Complexity Graphs and Memory-Hard Functions''], 2015</ref><ref>{{cite arXiv |last1=Alwen |first1=Joel |last2=Blocki |first2=Jeremiah |last3=Pietrzak |first3=Krzysztof |date=2017-07-07 |title=Sustained Space Complexity |
Other viable measures are integrating memory against physical time.<ref>(MO16) Moran, Orlov, [https://eprint.iacr.org/2016/035.pdf ''Simple Proofs of Space-Time and Rational Proofs of Storage''], 2016</ref>, and measuring memory [[bandwidth (computing)|bandwidth]] consumption on a memory bus.<ref>(BR18) Blocki, Ren, [https://eprint.iacr.org/2018/221.pdf ''Bandwidth-Hard Functions: Reductions and Lower Bounds''], 2018</ref> Functions requiring high memory bandwidth are sometimes referred to as "bandwidth-hard functions."<ref>{{Cite web |last1=Blocki |first1=Jeremiah |last2=Liu |first2=Peiyuan |last3=Ren |first3=Ling |last4=Zhou |first4=Samson |date=2022 |title=Bandwidth-Hard Functions: Reductions and Lower Bounds |url=https://eprint.iacr.org/2018/221.pdf |url-status=live |archive-url=https://web.archive.org/web/20230112040047/https://eprint.iacr.org/2018/221.pdf |archive-date=2023-01-11 |access-date=2023-01-11 |website=[[Cryptology ePrint Archive]]}}</ref>
|