Content deleted Content added
→Overview: Not clear what "aesthetic" manipulation is, nor is computer graphics exclusively focused on aesthetic concerns. |
Yarrowfes21 (talk | contribs) hyperlink |
||
Line 25:
{{See also|History of computer animation|Computer graphics#History}}
There are several international conferences and journals where the most significant results in computer graphics are published. Among them are the [[SIGGRAPH]] and [[Eurographics]] conferences and the [[Association for Computing Machinery]] (ACM) Transactions on Graphics journal. The joint Eurographics and [[ACM SIGGRAPH]] symposium series features the major venues for the more specialized sub-fields: Symposium on Geometry Processing,<ref>{{cite web |url = http://www.geometryprocessing.org |title = geometryprocessing.org |website = geometryprocessing.org |access-date=2014-05-01 }}</ref> Symposium on Rendering, Symposium on Computer Animation,<ref>[http://www.eg.org/events
As in the rest of computer science, conference publications in computer graphics are generally more significant than journal publications (and subsequently have lower acceptance rates).<ref name="cra memo">{{cite web |url = http://www.cra.org/reports/tenure_review.html |title=Best Practices Memo |website = Cra.org |access-date=2014-05-01 |archive-url = https://web.archive.org/web/20140502002308/http://www.cra.org/reports/tenure_review.html |archive-date=2014-05-02 |url-status=dead }}</ref><ref name="ernst note">{{cite web |url = http://people.csail.mit.edu/mernst/advice/conferences-vs-journals.html |title=Choosing a venue: conference or journal? |website = People.csail.mit.edu |access-date=2014-05-01}}</ref><ref name="graphics acceptance rates">{{cite web |url = http://vrlab.epfl.ch/~ulicny/statistics/ |title = Graphics/vision publications acceptance rates statistics |website = vrlab.epfl.ch |access-date=2014-05-01 }}</ref><ref>An extensive history of computer graphics can be found at [http://accad.osu.edu/~waynec/history/lessons.html this page] {{webarchive |url = https://web.archive.org/web/20070405172134/http://accad.osu.edu/~waynec/history/lessons.html |date=April 5, 2007 }}.</ref>
Line 43:
Geometry subfields include:
* [[Implicit surface]] modeling – an older subfield which examines the use of algebraic surfaces, [[constructive solid geometry]], etc., for surface representation.
* Digital geometry processing – [[3d scanning|surface reconstruction]], simplification, fairing, mesh repair, [[mesh parameterization|parameterization]], remeshing, [[mesh generation]], surface compression, and surface editing all fall under this heading.<ref name="caltech multires dgp">[http://www.multires.caltech.edu/pubs/DGPCourse/
* Discrete differential geometry – a nascent field which defines geometric quantities for the discrete surfaces used in computer graphics.<ref name="columbia ddg">{{cite web |url = http://ddg.cs.columbia.edu/ |title=Discrete Differential Geometry |website = ddg.cs.columbia.edu |access-date=2014-05-01}}</ref>
* Point-based graphics – a recent field which focuses on points as the fundamental representation of surfaces.
Line 173:
* [[Blackmagic Fusion]]
* [[Adobe After Effects]]
* [[Natron (software)|Natron]]
'''Rendering'''
|