Content deleted Content added
Changed some symbols and copy editing |
Copy editing |
||
Line 8:
==Definitions==
Let <math>X</math> be a [[vector space]] over a field <math>\mathbb{K},</math> where <math>\mathbb{K}</math> is either the [[real number]]s <math>\
A real-valued function <math>p : X \to \
<ol>
<li>''[[Positive homogeneity]]'''/'''[[Nonnegative homogeneity]]'':{{sfn|Schechter|1996|pp=313-315}} <math>p(r x) = r p(x)</math> for all real <math>r \geq 0</math> and all <math>x \in X.</math>
Line 17:
</ol>
A function <math>p : X \to \
It is a ''{{em|{{visible anchor|symmetric function}}}}'' if <math>p(-x) = p(x)</math> for all <math>x \in X.</math>
Every subadditive symmetric function is necessarily nonnegative.<ref group=proof>Let <math>x \in X.</math> The triangle inequality and symmetry imply <math>p(0) = p(x + (- x)) \leq p(x) + p(-x) = p(x) + p(x) = 2 p(x).</math> Substituting <math>0</math> for <math>x</math> and then subtracting <math>p(0)</math> from both sides proves that <math>0 \leq p(0).</math> Thus <math>0 \leq p(0) \leq 2 p(x)</math> which implies <math>0 \leq p(x).</math> <math>\blacksquare</math></ref>
Line 30:
Every [[Norm (mathematics)|norm]], [[seminorm]], and real linear functional is a sublinear function.
The [[identity function]] <math>\
More generally, for any real <math>a \leq b,</math> the map
<math display=block>\begin{alignat}{4}
S_{a,b} :\;&& \
&& x &&\;\mapsto\;&
\begin{cases}
Line 40:
\end{cases} \\
\end{alignat}</math>
is a sublinear function on <math>X := \
If <math>p</math> and <math>q</math> are sublinear functions on a real vector space <math>X</math> then so is the map <math>x \mapsto \max \{p(x), q(x)\}.</math> More generally, if <math>\mathcal{P}</math> is any non-empty collection of sublinear functionals on a real vector space <math>X</math> and if for all <math>x \in X,</math> <math>q(x) := \sup \{p(x) : p \in \mathcal{P}\},</math> then <math>q</math> is a sublinear functional on <math>X.</math>{{sfn|Narici|Beckenstein|2011|pp=177-221}}
A function <math>p : X \to \
==Properties==
Line 56:
</math>
If <math>p : X \to \
<math display=block>p(0) ~=~ 0 ~\leq~ p(x) + p(- x) \qquad \text{ for every } x \in X,</math>
which implies that at least one of <math>p(x)</math> and <math>p(- x)</math> must be nonnegative; that is,{{sfn|Narici|Beckenstein|2011|pp=120-121}}
<math display=block>0 ~\leq~ \max \{p(x), p(- x)\} \qquad \text{ for every } x \in X.</math>
Moreover, when <math>p : X \to \
Subadditivity of <math>p : X \to \
<math display=block>p(x) - p(y) ~\leq~ p(x - y),</math>
<math display=block>- p(x) ~\leq~ p(- x),</math>
Line 88:
===Associated seminorm===
If <math>p : X \to \
A sublinear function <math>p</math> on a real or complex vector space is a [[#symmetric function|symmetric function]] if and only if <math>p = q</math> where <math>q(x) := \max \{p(x), p(- x)\}</math> as before.
More generally, if <math>p : X \to \
<math display=block>q(x) ~:=~ \sup_{|u|=1} p(u x) ~=~ \sup \{p(u x) : u \text{ is a unit scalar }\}</math>
will define a [[seminorm]] on <math>X</math> if this supremum is always a real number (that is, never equal to <math>\infty</math>).
Line 112:
A real-valued function <math>f</math> defined on a subset of a real or complex vector space <math>X</math> is said to be {{em|dominated by}} a sublinear function <math>p</math> if <math>f(x) \leq p(x)</math> for every <math>x</math> that belongs to the ___domain of <math>f.</math>
If <math>f : X \to \
Moreover, if <math>p</math> is a seminorm or some other {{em|symmetric map}} (which by definition means that <math>p(-x) = p(x)</math> holds for all <math>x</math>) then <math>f \leq p</math> if and only if <math>|f| \leq p.</math>
{{Math theorem|name=Theorem{{sfn|Narici|Beckenstein|2011|pp=177-220}}|math_statement=
If <math>p : X \to \
Moreover, if <math>X</math> is a [[topological vector space]] and <math>p</math> is continuous at the origin then <math>f</math> is continuous.
}}
Line 123:
{{Math theorem|name=Theorem{{sfn|Narici|Beckenstein|2011|pp=192-193}}|math_statement=
Suppose <math>f : X \to \
Then <math>f</math> is continuous at the origin if and only if <math>f</math> is uniformly continuous on <math>X.</math>
If <math>f</math> satisfies <math>f(0) = 0</math> then <math>f</math> is continuous if and only if its absolute value <math>|f| : X \to [0, \infty)</math> is continuous.
Line 173:
==Computer science definition==
In [[computer science]], a function <math>f : \Z^+ \to \
Formally, <math>f(n) \in o(n)</math> if and only if, for any given <math>c > 0,</math> there exists an <math>N</math> such that <math>f(n) < c n</math> for <math>n \geq N.</math><ref>{{cite book|author=[[Thomas H. Cormen]], [[Charles E. Leiserson]], [[Ronald L. Rivest]], and [[Clifford Stein]]|title=[[Introduction to Algorithms]]|orig-year=1990|edition=2nd|year=2001|publisher=MIT Press and McGraw-Hill|pages=47–48|chapter=3.1|isbn=0-262-03293-7}}</ref>
That is, <math>f</math> grows slower than any linear function.
|