Coshc function: Difference between revisions

Content deleted Content added
Citation bot (talk | contribs)
Removed proxy/dead URL that duplicated identifier. | Use this bot. Report bugs. | Suggested by Corvus florensis | #UCB_webform 1822/3499
Tags: Mobile edit Mobile web edit Advanced mobile edit
Line 23:
* <math>\operatorname{coshc}(z) = \frac {( iz+1/2\,\pi) {\rm M}(1,2,i\pi -2z)}{e^{(i/2)\pi -z} z} </math>, where <math>{\rm{M}}(a,b,z)</math> is Kummer's [[confluent hypergeometric function]].
*<math>\operatorname{coshc}(z)=\frac{1}{2}\,\frac {(2\,iz+\pi) \operatorname{HeunB} \left( 2,0,0,0,\sqrt {2}\sqrt {1/2\,i\pi -z} \right) } {e^{1/2\,i\pi -z}z} </math>, where <math>{\rm{HeunB}}(q, \alpha, \gamma, \delta, \epsilon ,z)</math> is the biconfluent [[Heun function]].
* <math>\operatorname{coshc}(z)= \frac {-i(2\,iz+\pi) {{\rm \mathbf WhittakerM}(0,\,1/2,\,i\pi -2z)}}{(4iz+2\pi) z}</math>, where <math>{\rm{WhittakerM}}(a,b,z)</math> is a [[Whittaker function]].
 
==Gallery==