Content deleted Content added
MewTheEditor (talk | contribs) m Distinguish |
m Fixing broken anchor: 2018-03-27 #Approximations .28exchange-correlation functionals.29→Density functional theory#Approximations (exchange–correlation functionals) |
||
Line 16:
== Applications ==
Local density approximations, as with GGAs are employed extensively by [[solid-state physics|solid state physicists]] in ab-initio DFT studies to interpret electronic and magnetic interactions in semiconductor materials including semiconducting oxides and [[spintronics]]. The importance of these computational studies stems from the system complexities which bring about high sensitivity to synthesis parameters necessitating first-principles based analysis. The prediction of [[Fermi level]] and band structure in doped semiconducting oxides is often carried out using LDA incorporated into simulation packages such as CASTEP and DMol3.<ref>{{cite journal| last1=Segall| first1=M.D.| last2=Lindan| first2=P.J | title= First-principles simulation: ideas, illustrations and the CASTEP code | journal= Journal of Physics: Condensed Matter | year= 2002| volume=14| issue=11| pages=2717|bibcode = 2002JPCM...14.2717S |doi = 10.1088/0953-8984/14/11/301 | s2cid=250828366}}</ref> However an underestimation in [[Band gap]] values often associated with LDA and [[Density functional theory#Approximations
== Homogeneous electron gas ==
|