Content deleted Content added
Erel Segal (talk | contribs) →Algorithms for contraction mappings: use the more common terminology |
Erel Segal (talk | contribs) |
||
Line 4:
The unit interval is denoted by ''E'' := [0,1], and the unit [[N-cube|''d''-dimensional cube]] is denoted by ''E<sup>d</sup>''. A [[continuous function]] ''f'' is defined on ''E<sup>d</sup>'' (from ''E<sup>d</sup>'' to itself)''.'' Often, it is assumed that ''f'' is not only continuous but also [[Lipschitz continuous]], that is, for some constant ''L'', <math>|f(x)-f(y)| \leq L\cdot |x-y|</math> for all ''x,y'' in ''E<sup>d</sup>''.
A '''fixed point''' of ''f'' is a point ''x'' in ''E<sup>d</sup>'' such that ''f''(''x'')=''x''.
* The '''residual criterion''': given an approximation parameter <math>\varepsilon>0</math> , An '''{{mvar|ε}}-residual fixed-point of''' '''''f''''' is a point ''x'' in ''E<sup>d</sup>'' such that <math>|f(x)-x|\leq \varepsilon</math>, where here ''|.|'' denotes the [[maximum norm]]. That is, all ''d'' coordinates of the difference <math>f(x)-x</math> should be at most {{mvar|ε}}.<ref name=":0" />{{Rp|page=4}}
|