Plancherel theorem: Difference between revisions

Content deleted Content added
Citation bot (talk | contribs)
Add: s2cid. | Use this bot. Report bugs. | Suggested by Abductive | Category:Lp spaces | #UCB_Category 16/21
JadeNB (talk | contribs)
m L^p
Line 10:
|background colour=#F5FFFA}}
 
A more precise formulation is that if a function is in both [[Lp space|Lp''L''<sup>''p''</sup> spaces]] <math>L^1(\mathbb{R})</math> and <math>L^2(\mathbb{R})</math>, then its [[Fourier transform]] is in <math>L^2(\mathbb{R})</math>, and the Fourier transform map is an isometry with respect to the ''L''<sup>2</sup> norm. This implies that the Fourier transform map restricted to <math>L^1(\mathbb{R}) \cap L^2(\mathbb{R})</math> has a unique extension to a linear isometric map <math>L^2(\mathbb{R}) \mapsto L^2(\mathbb{R})</math>, sometimes called the Plancherel transform. This isometry is actually a [[unitary operator|unitary]] map. In effect, this makes it possible to speak of Fourier transforms of [[quadratically integrable function]]s.
 
Plancherel's theorem remains valid as stated on ''n''-dimensional [[Euclidean space]] <math>\mathbb{R}^n</math>. The theorem also holds more generally in [[locally compact abelian group]]s. There is also a version of the Plancherel theorem which makes sense for non-commutative locally compact groups satisfying certain technical assumptions. This is the subject of [[non-commutative harmonic analysis]].