Content deleted Content added
add distinguish hatnote |
mNo edit summary |
||
Line 2:
{{AFC submission|d|v|u=Onlineuser577215|ns=118|decliner=Majash2020|declinets=20230412023636|small=yes|ts=20221206210833}} <!-- Do not remove this line! -->
{{AFC comment|1=
----
{{Distinguish|Inverse-gamma distribution|Reciprocal gamma function}}
{{Short description|Inverse of the gamma function}}
{{Draft topics|mathematics}}
{{AfC topic|stem}}
In [[mathematics]], the inverse gamma function <math>\Gamma^{-1}(x)</math> is the [[inverse function]] of the [[gamma function]]. In other words, it is the function satisfying <math display="inline">\Gamma(y)=x</math>. For example, <math>\Gamma^{-1}(24)=5</math> <ref>{{Cite journal |last=Borwein, Corless |title=Gamma and Factorial in the Monthly |journal=|year=2017 |arxiv=1703.05349 }}</ref>. Usually, the inverse gamma function refers to the principal branch on the interval <math>\left(\Gamma(\alpha)= 0.8856031..., \infty\right)</math> where <math>\alpha=1.4616321...</math> is the unique positive number such that
|jstor=41505586 |s2cid=85549521 |access-date=20 March 2023}}</ref>
==== Definition ====
|