Particular values of the gamma function: Difference between revisions

Content deleted Content added
{{Wikipedia:No original research|NOR}}
Tags: Manual revert Visual edit Mobile edit Mobile web edit
Tags: nowiki added Visual edit
Line 159:
 
where {{math|''θ''<sub>1</sub>}} and {{math|''θ''<sub>4</sub>}} are two of the [[Theta function|Jacobi theta functions]].
 
Certain values of the gamma function can also be written in terms of the [[hypergeometric function]]. For instance, <math>\Gamma\left(\frac{1}{4}\right)^{4}=\frac{32\pi^{3}}{\sqrt{33}} {}_{3}F_{2}\left(\frac{1}{2},\ \frac{1}{6},\ \frac{5}{6};\ 1,\ 1;\ \frac{8}{1331}\right)</math>
 
and
 
<math>\Gamma\left(\frac{1}{3}\right)^{6}=\frac{12\pi^{4}}{\sqrt{10}} {}_{3}F_{2}\left(\frac{1}{2},\ \frac{1}{6},\ \frac{5}{6};\ 1,\ 1;\ -\frac{9}{64000}\right)</math>
 
however it is an open question whether this is possible for all rational inputs to the gamma function. <ref>Johansson, F. (2023). Arbitrary-precision computation of the gamma function. ''Maple Transactions'', ''3''(1). <nowiki>https://doi.org/10.5206/mt.v3i1.14591</nowiki></ref>
 
== Products ==