Content deleted Content added
m v2.05b - Bot T20 CW#61 - Fix errors for CW project (Reference before punctuation) |
Citation bot (talk | contribs) Alter: title, template type. Add: s2cid, chapter. Removed parameters. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox2 | #UCB_webform_linked 2213/2384 |
||
Line 1:
The '''vector-radix FFT algorithm''', is a multidimensional [[fast Fourier transform]] (FFT) algorithm, which is a generalization of the ordinary [[Cooley–Tukey FFT algorithm]] that divides the transform dimensions by arbitrary radices. It breaks a multidimensional (MD) [[discrete Fourier transform]] (DFT) down into successively smaller MD DFTs until, ultimately, only trivial MD DFTs need to be evaluated.<ref name="Dudgeon83">{{cite book|last1=Dudgeon|first1=Dan|last2=Russell|first2=Mersereau|title=Multidimensional Digital Signal Processing|date=September 1983|publisher=Prentice Hall|isbn=0136049591|pages=76}}</ref>
The most common multidimensional [[Fast Fourier transform|FFT]] algorithm is the row-column algorithm, which means transforming the array first in one index and then in the other, see more in [[Fast Fourier transform|FFT]]. Then a radix-2 direct 2-D FFT has been developed,<ref name="Rivard77">{{cite journal|last1=Rivard|first1=G.|title=Direct fast Fourier transform of bivariate functions|journal=IEEE Transactions on Acoustics, Speech, and Signal Processing|volume=25|issue=3|pages=250–252|doi=10.1109/TASSP.1977.1162951|year=1977}}</ref> and it can eliminate 25% of the multiplies as compared to the conventional row-column approach. And this algorithm has been extended to rectangular arrays and arbitrary radices,<ref name="Harris77">{{cite
Vector-radix FFT algorithm can reduce the number of complex multiplications significantly, compared to row-vector algorithm. For example, for a <math>N^M</math> element matrix (M dimensions, and size N on each dimension), the number of complex multiples of vector-radix FFT algorithm for radix-2 is <math>\frac{2^M -1}{2^M} N^M \log_2 N</math>, meanwhile, for row-column algorithm, it is <math>\frac{M N^M} 2 \log_2 N</math>. And generally, even larger savings in multiplies are obtained when this algorithm is operated on larger radices and on higher dimensional arrays.<ref name=Harris77/>
Overall, the vector-radix algorithm significantly reduces the structural complexity of the traditional DFT having a better indexing scheme, at the expense of a slight increase in arithmetic operations. So this algorithm is widely used for many applications in engineering, science, and mathematics, for example, implementations in image processing,<ref name="Buijs74">{{cite journal|last1=Buijs|first1=H.|last2=Pomerleau|first2=A.|last3=Fournier|first3=M.|last4=Tam|first4=W.|title=Implementation of a fast Fourier transform (FFT) for image processing applications|journal=IEEE Transactions on Acoustics, Speech, and Signal Processing|date=Dec 1974|volume=22|issue=6|pages=420–424|doi=10.1109/TASSP.1974.1162620}}</ref> and high speed FFT processor designing.<ref name="Badar15">{{cite
== 2-D DIT case ==
Line 55:
== Other approaches ==
The [[split-radix FFT algorithm]] has been proved to be a useful method for 1-D DFT. And this method has been applied to the vector-radix FFT to obtain a split vector-radix FFT.<ref name=Chan92/><ref name="Pei87">{{cite
In conventional 2-D vector-radix algorithm, we decompose the indices <math>k_1,k_2</math> into 4 groups:
|