Content deleted Content added
No edit summary |
Tags: Reverted Mobile edit Mobile web edit |
||
Line 18:
===Hilbert spaces===
[[Hilbert space]]s can be completely classified: there is a unique Hilbert space [[up to]] [[isomorphism]] for every [[cardinal number|cardinality]] of the [[orthonormal basis]].<ref>{{Cite book| last=Riesz|first=Frigyes| url=https://www.worldcat.org/oclc/21228994|title=Functional analysis|date=1990|publisher=Dover Publications| others = Béla Szőkefalvi-Nagy, Leo F. Boron|isbn=0-486-66289-6|edition=Dover |___location=New York|oclc=21228994| pages = 195–199}}</ref> Finite-dimensional Hilbert spaces are fully understood in [[linear algebra]], and infinite-dimensional [[Separable space|separable]] Hilbert spaces are isomorphic to [[Sequence space#ℓp spaces|<math>\ell^{\,2}(\aleph_0)\,</math>]]. Separability being important for applications, functional analysis of Hilbert spaces consequently mostly deals with this space. One of the open problems in functional analysis is to
===Banach spaces===
|