Metropolis–Hastings algorithm: Difference between revisions

Content deleted Content added
Line 146:
{{main article|Bayesian Inference}}
[[File:Flowchart-of-Metropolis-Hastings-M-H-algorithm-for-the-parameter-estimation-using-the.png|thumb|Flowchart of Metropolis-Hastings (M-H) algorithm for the parameter estimation using the Markov Chain Monte Carlo (MCMC) approach.]]
MCMC can be used to estimatedraw optimalsamples parametersfrom the [[posterior distribution]] of a statistical model.
The acceptance probability is given by:
<math>P_{acc}(\theta_i \to \theta^*)=\min\left(1, \frac{\mathcal{L}(y|\theta^*)P(\theta^*)}{\mathcal{L}(y|\theta_i)P(\theta_i)}\frac{Q(\theta_i|\theta^*)}{Q(\theta^*|\theta_i)}\right),</math>