Content deleted Content added
→Exact algorithms for a small number of variables{{Anchor|Lenstra}}: but doubly exponential |
|||
Line 127:
Suppose <math>A</math> is an ''m''-by-''n'' integer matrix and <math>\mathbf{b}</math> is an ''m''-by-1 integer vector. We focus on the feasibility problem, which is to decide whether there exists an ''n''-by-1 vector <math>\mathbf{x}</math> satisfying <math> A \mathbf{x} \le \mathbf{b} </math>.
Let ''V'' be the maximum absolute value of the coefficients in <math>A</math> and <math>\mathbf{b}</math>. If ''n'' (the number of variables) is a fixed constant, then the feasibility problem can be solved in time polynomial in ''m'' and log ''V''. This is trivial for the case ''n''=1. The case ''n''=2 was solved in 1981 by [[Herbert Scarf]].<ref>{{Cite journal|last=Scarf|first=Herbert E.|date=1981|title=Production Sets with Indivisibilities, Part I: Generalities|url=https://www.jstor.org/stable/1911124|journal=Econometrica|volume=49|issue=1|pages=1–32|doi=10.2307/1911124|jstor=1911124|issn=0012-9682}}</ref> The general case was solved in 1983 by [[Hendrik Lenstra]], combining ideas by [[László Lovász]] and [[Peter van Emde Boas]].<ref name=":0">{{Cite journal|last=Lenstra|first=H. W.|date=1983-11-01|title=Integer Programming with a Fixed Number of Variables|url=https://pubsonline.informs.org/doi/abs/10.1287/moor.8.4.538|journal=Mathematics of Operations Research|volume=8|issue=4|pages=538–548|doi=10.1287/moor.8.4.538|issn=0364-765X|citeseerx=10.1.1.431.5444}}</ref> [[Doignon's theorem]] asserts that an integer program is feasible whenever every subset of <math>2^n</math> constraints is feasible; a method combining this result with algorithms for [[LP-type problem]]s can be used to solve integer programs in time that is linear in <math>m</math> and [[fixed-parameter tractable]] (but possibly [[Double exponential function|doubly exponential]]) in <math>n</math>, with no dependence on <math>V</math>.<ref>{{cite conference
| last1 = Amenta | first1 = Nina | author1-link = Nina Amenta
| last2 = De Loera | first2 = Jesús A. | author2-link = Jesús A. De Loera
|