Content deleted Content added
Citation bot (talk | contribs) Alter: title, template type. Add: chapter. Removed parameters. | Use this bot. Report bugs. | #UCB_CommandLine |
Citation bot (talk | contribs) Alter: title, template type. Add: chapter. Removed parameters. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox3 | #UCB_webform_linked 344/2306 |
||
Line 1:
{{Short description|Representation of a computer program}}
In [[computer science]], a '''code property graph''' (CPG) is a [[computer program]] representation that captures [[Abstract syntax tree|syntactic structure]], [[Control-flow graph|control flow]], and [[data dependencies]] in a [[Graph database|property graph]]. The concept was originally introduced to identify security vulnerabilities in [[C (programming language)|C]] and [[C++]] system code,<ref>{{cite book |last1=Yamaguchi |first1=Fabian |last2=Golde |first2=Nico |last3=Arp |first3=Daniel |last4=Rieck |first4=Konrad |title=2014 IEEE Symposium on Security and Privacy |chapter=Modeling and Discovering Vulnerabilities with Code Property Graphs |date=May 2014 |pages=590–604 |doi=10.1109/SP.2014.44|isbn=978-1-4799-4686-0 |s2cid=2231082 }}</ref> but has since been employed to analyze [[web application]]s,<ref>{{cite book |last1=Backes |first1=Michael |last2=Rieck |first2=Konrad |last3=Skoruppa |first3=Malte |last4=Stock |first4=Ben |last5=Yamaguchi |first5=Fabian |title=2017 IEEE European Symposium on Security and Privacy (EuroS&P) |chapter=Efficient and Flexible Discovery of PHP Application Vulnerabilities |date=April 2017 |pages=334–349 |doi=10.1109/EuroSP.2017.14|isbn=978-1-5090-5762-7 |s2cid=206649536 }}</ref><ref>{{cite book |last1=Li |first1=Song |last2=Kang |first2=Mingqing |last3=Hou |first3=Jianwei |last4=Cao |first4=Yinzhi |title=Mining Node.js Vulnerabilities via Object Dependence Graph and Query |date=2022 |pages=143–160 |isbn=9781939133311 |url=https://www.usenix.org/conference/usenixsecurity22/presentation/li-song |language=en}}</ref><ref>{{cite journal |last1=Brito |first1=Tiago |last2=Lopes |first2=Pedro |last3=Santos |first3=Nuno |last4=Santos |first4=José Fragoso |title=Wasmati: An efficient static vulnerability scanner for WebAssembly |journal=Computers & Security |date=1 July 2022 |volume=118 |pages=102745 |doi=10.1016/j.cose.2022.102745|arxiv=2204.12575 |s2cid=248405811 }}</ref><ref>{{cite book |last1=Khodayari |first1=Soheil |last2=Pellegrino |first2=Giancarlo |title=JAW: Studying Client-side CSRF with Hybrid Property Graphs and Declarative Traversals |date=2021 |pages=2525–2542 |isbn=9781939133243 |url=https://www.usenix.org/conference/usenixsecurity21/presentation/khodayari |language=en}}</ref> cloud deployments,<ref>{{cite book |last1=Banse |first1=Christian |last2=Kunz |first2=Immanuel |last3=Schneider |first3=Angelika |last4=Weiss |first4=Konrad |title=2021 IEEE 14th International Conference on Cloud Computing (CLOUD) |chapter=Cloud Property Graph: Connecting Cloud Security Assessments with Static Code Analysis |date=September 2021 |pages=13–19 |doi=10.1109/CLOUD53861.2021.00014|arxiv=2206.06938 |isbn=978-1-6654-0060-2 |s2cid=243946828 }}</ref> and smart contracts.<ref>{{cite journal |last1=Giesen |first1=Jens-Rene |last2=Andreina |first2=Sebastien |last3=Rodler |first3=Michael |last4=Karame |first4=Ghassan |last5=Davi |first5=Lucas |title=Practical Mitigation of Smart Contract Bugs {{!}} TeraFlow |website=www.teraflow-h2020.eu |url=https://www.teraflow-h2020.eu/publications/practical-mitigation-smart-contract-bugs}}</ref> Beyond vulnerability discovery, code property graphs find applications in code clone detection,<ref>{{cite
== Definition ==
Line 34:
== Machine learning on code property graphs ==
Code property graphs provide the basis for several machine-learning-based approaches to vulnerability discovery. In particular, [[graph neural network]]s (GNN) have been employed to derive vulnerability detectors.<ref>{{cite journal |last1=Zhou |first1=Yaqin |last2=Liu |first2=Shangqing |last3=Siow |first3=Jingkai |last4=Du |first4=Xiaoning |last5=Liu |first5=Yang |title=Devign: effective vulnerability identification by learning comprehensive program semantics via graph neural networks |journal=Proceedings of the 33rd International Conference on Neural Information Processing Systems |date=8 December 2019 |pages=10197–10207 |url=https://dl.acm.org/doi/10.5555/3454287.3455202 |publisher=Curran Associates Inc.|arxiv=1909.03496 }}</ref><ref>{{cite book |last1=Haojie |first1=Zhang |last2=Yujun |first2=Li |last3=Yiwei |first3=Liu |last4=Nanxin |first4=Zhou |title=2021 18th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP) |chapter=Vulmg: A Static Detection Solution for Source Code Vulnerabilities Based on Code Property Graph and Graph Attention Network |date=December 2021 |pages=250–255 |doi=10.1109/ICCWAMTIP53232.2021.9674145|isbn=978-1-6654-1364-0 |s2cid=246039350 }}</ref><ref>{{cite book |last1=Zheng |first1=Weining |last2=Jiang |first2=Yuan |last3=Su |first3=Xiaohong |title=2021 IEEE 32nd International Symposium on Software Reliability Engineering (ISSRE) |chapter=Vu1SPG: Vulnerability detection based on slice property graph representation learning |date=October 2021 |pages=457–467 |doi=10.1109/ISSRE52982.2021.00054|isbn=978-1-6654-2587-2 |s2cid=246751595 }}</ref><ref>{{cite journal |last1=Chakraborty |first1=Saikat |last2=Krishna |first2=Rahul |last3=Ding |first3=Yangruibo |last4=Ray |first4=Baishakhi |title=Deep Learning based Vulnerability Detection: Are We There Yet |journal=IEEE Transactions on Software Engineering |date=2021 |volume=48 |issue=9 |pages=3280–3296 |doi=10.1109/TSE.2021.3087402|arxiv=2009.07235 |s2cid=221703797 }}</ref><ref>{{cite book |last1=Zhou |first1=Li |last2=Huang |first2=Minhuan |last3=Li |first3=Yujun |last4=Nie |first4=Yuanping |last5=Li |first5=Jin |last6=Liu |first6=Yiwei |title=2021 IEEE Sixth International Conference on Data Science in Cyberspace (DSC) |chapter=GraphEye: A Novel Solution for Detecting Vulnerable Functions Based on Graph Attention Network |date=October 2021 |pages=381–388 |doi=10.1109/DSC53577.2021.00060|arxiv=2202.02501 |isbn=978-1-6654-1815-7 |s2cid=246634824 }}</ref><ref>{{cite
== See also ==
|