Rotating reference frame: Difference between revisions

Content deleted Content added
No edit summary
Tag: Reverted
Line 18:
The following is a derivation of the formulas for accelerations as well as fictitious forces in a rotating frame. It begins with the relation between a particle's coordinates in a rotating frame and its coordinates in an inertial (stationary) frame. Then, by taking time derivatives, formulas are derived that relate the velocity of the particle as seen in the two frames, and the acceleration relative to each frame. Using these accelerations, the fictitious forces are identified by comparing Newton's second law as formulated in the two different frames.
 
=== Relation between positionscoordinates in the two frames ===
 
To derive these fictitious forces, it's helpful to be able to convert between the coordinates <math>\left(x', y', z'\right)</math> of the rotating reference frame and the coordinates <math>(x, y, z)</math> of an [[inertial reference frame]] with the same origin.<ref group=note>So <math>x', y', z'</math> are functions of <math>x, y, z,</math> and time <math>t.</math> Similarly <math>x, y, z</math> are functions of <math>x', y', z',</math> and <math>t.</math> That these reference frames have the same origin means that for all <math>t,</math> <math>\left(x', y', z'\right) = (0, 0, 0)</math> if and only if <math>(x, y, z) = (0, 0, 0).</math></ref>