Content deleted Content added
Thatsme314 (talk | contribs) m →Blockwise formula: ce |
|||
Line 94:
Suppose the design matrix <math>\mathbf{X}</math> can be decomposed by columns as <math>\mathbf{X} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \end{bmatrix}</math>.
Define the hat or projection operator as <math>\mathbf{P}[\mathbf{X}] := \mathbf{X} \left(\mathbf{X}^\textsf{T} \mathbf{X} \right)^{-1} \mathbf{X}^\textsf{T}</math>. Similarly, define the residual operator as <math>\mathbf{M}[\mathbf{X}] := \mathbf{I} - \mathbf{P}[\mathbf{X}]</math>.
Then the projection matrix can be decomposed as follows:<ref>{{cite book|last1=Rao|first1=C. Radhakrishna|last2=Toutenburg|first2=Helge|author3=Shalabh|first4=Christian|last4=Heumann|title=Linear Models and Generalizations|url=https://archive.org/details/linearmodelsgene00raop|url-access=limited|year=2008|publisher=Springer|___location=Berlin|isbn=978-3-540-74226-5|
:<math> \mathbf{P}[\mathbf{X}] = \mathbf{P}[\mathbf{A}] + \mathbf{P}\big[\mathbf{M}[\mathbf{A}] \mathbf{B}\big], </math>
where, e.g., <math>\mathbf{P}[\mathbf{A}] = \mathbf{A} \left(\mathbf{A}^\textsf{T} \mathbf{A} \right)^{-1} \mathbf{A}^\textsf{T}</math> and <math>\mathbf{M}[\mathbf{A}] = \mathbf{I} - \mathbf{P}[\mathbf{A}]</math>.
|