Content deleted Content added
m →See also: Boxcar_function |
|||
Line 88:
== Dirac delta function ==
The rectangle function can be used to represent the [[Dirac delta function]] <math>\delta (x)</math>.<ref name=":0">{{Cite book |last=Khare |first=Kedar |title=Fourier Optics and Computational Imaging |last2=Butola |first2=Mansi |last3=Rajora |first3=Sunaina |publisher=Springer |year=2023 |isbn=978-3-031-18353-9 |edition=2nd |pages=15-16 |chapter=Chapter 2.4 Sampling by Averaging, Distributions and Delta Function |doi=10.1007/978-3-031-18353-9}}</ref> Specifically,<math display="block">\delta (x) = \lim_{a \to
<math display="block">g_{avg}(0) = \frac{1}{a} \int\limits_{- \infty}^{\infty} dx\ g(x) \mathrm{rect}(\frac{x}{a}).</math>
Line 104:
<math display="block">\delta (f) = 1,</math>
means that the frequency spectrum of the Dirac delta function is infinitely broad. As a pulse is shorten in time, it is larger in spectrum.
==See also==
*[[Fourier transform]]
|