Modal testing: Difference between revisions

Content deleted Content added
m Shaker Modal Testing: Grammatical and spelling changes.
m Shaker Modal Testing: Fixed small typo.
Line 15:
A shaker is a device that excites the object or structure according to its amplified input signal. Several input signals are available for modal testing, but the sine sweep and random frequency vibration profiles are by far the most commonly used signals.
 
Small objects or structures can be attached directly to the [[Simulation table|shaker table]]. With some types of shakers, an armature is often attached to the body to be tested by way of piano wire (pulling force) or stinger (Pushingpushing force). When the signal is transmitted through the piano wire or the stinger, the object responds the same way as impact testing, by attenuating some and amplifying certain frequencies. These frequencies are measured as modal frequencies. Usually a load cell is placed between the shaker and the structure to obtain the excitation force.
 
For large civil engineering structures much larger shakers are used, which can have a mass of 100 [[kg]] and above, and are able to apply a force of many hundreds of [[newtons]]. Several types of shakers are common: rotating mass shakers, electrodynamic shakers, and electrohydraulic shakers. For rotating mass shakers, the force can be calculated by knowing the mass and the speed of rotation, while for electrodynamic shakers, the force can be obtained through a load cell or an accelerometer placed on the moving mass of the shaker. Shakers have an advantage over the impact hammer as they can supply more energy to a structure over a longer period of time. However, problems can also be introduced; shakers can influence the dynamic properties of the structure and can also increase the complexity of analysis due to [[window function|windowing]] errors.