Content deleted Content added
+wl |
→Efficient construction: rm editorialization |
||
Line 17:
==Efficient construction==
A Cartesian tree can be constructed in [[linear time]] from its input sequence.
One method is to
An alternative linear-time construction algorithm is based on the [[all nearest smaller values]] problem. In the input sequence, define the ''left neighbor'' of a value <math>a</math> to be the value that occurs prior to <math>a</math>, is smaller than <math>a</math>, and is closer in position to <math>a</math> than any other smaller value. The ''right neighbor'' is defined symmetrically. The sequence of left neighbors can be found by an algorithm that maintains a [[stack (data structure)|stack]] containing a subsequence of the input. For each new sequence value <math>a</math>, the stack is popped until it is empty or its top element is smaller than <math>a</math>, and then <math>a</math> is pushed onto the stack. The left neighbor of <math>a</math> is the top element at the time <math>a</math> is pushed. The right neighbors can be found by applying the same stack algorithm to the reverse of the sequence. The parent of <math>a</math> in the Cartesian tree is either the left neighbor of <math>a</math> or the right neighbor of <math>a</math>, whichever exists and has a larger value. The left and right neighbors can also be constructed efficiently by [[parallel algorithm]]s, making this formulation useful in efficient parallel algorithms for Cartesian tree construction.<ref>{{harvtxt|Berkman|Schieber|Vishkin|1993}}.</ref>
|