Content deleted Content added
The description of the Borel measure is misleading, since talking about "The Borel" measure is not right, mu is just "a Borel" measure to be found (according to the referenced paper.) and fixed citation. |
m Bot: link syntax and minor changes |
||
Line 11:
<math display="block">\Gamma^{-1}(x)=a+bx+\int_{-\infty}^{\Gamma(\alpha)}\left(\frac{1}{x-t}-\frac{t}{t^{2}-1}\right)d\mu(t) </math>
Where <math>\mu (t)</math> is a [[
== Approximation ==
To compute the branches of the inverse gamma function
<math>
Line 29:
To obtain a series expansion of the inverse gamma function one can first compute the series expansion of the [[reciprocal gamma function]] <math>\frac{1}{\Gamma(x)}</math> near the poles at the negative integers, and then invert the series.
Setting <math>z=\frac{1}{x}</math> then yields, for the ''n'' th branch <math>\Gamma_{n}^{-1}(z)</math> of the inverse gamma function (<math>n\ge 0</math>)
<math>\Gamma_{n}^{-1}(z)=-n+\frac{\left(-1\right)^{n}}{n!z}+\frac{\psi^{(0)}\left(n+1\right)}{\left(n!z\right)^2}+\frac{\left(-1\right)^{n}\left(\pi^{2}+9\psi^{(0)}\left(n+1\right)^{2}-3\psi^{(1)}\left(n+1\right)\right)}{6\left(n!z\right)^3}+O\left(\frac{1}{z^{4}}\right)</math>
|