Content deleted Content added
Citation bot (talk | contribs) Alter: title, template type. Add: chapter-url, chapter. Removed or converted URL. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Corvus florensis | #UCB_webform 81/2500 |
No edit summary |
||
Line 1:
{{Short description|A mathematical optimization problem restricted to integers}}
An '''integer programming''' problem is a [[mathematical optimization]] or [[Constraint satisfaction problem|feasibility]] program in which some or all of the variables are restricted to be [[integer]]s. In many settings the term refers to '''integer [[linear programming]]''' (ILP), in which the [[objective function]] and the constraints (other than the integer constraints) are [[Linear function (calculus)|linear]].
Integer programming is [[NP-complete]]{{Reference needed|date=May 2023}}. In particular, the special case of
If some decision variables are not discrete, the problem is known as a '''mixed-integer programming''' problem.<ref>{{cite web |url=http://macc.mcmaster.ca/maccfiles/chachuatnotes/07-MILP-I_handout.pdf |title=Mixed-Integer Linear Programming (MILP): Model Formulation |access-date=16 April 2018}}</ref>
Line 42:
</math>
The feasible integer points are shown in red, and the red dashed lines indicate their convex hull, which is the smallest convex polyhedron that contains all of these points. The blue lines together with the coordinate axes define the polyhedron of the LP relaxation, which is given by the inequalities without the integrality constraint. The goal of the optimization is to move the black dashed line as far upward while still touching the polyhedron. The optimal solutions of the integer problem are the points <math>(1,2)</math> and <math>(2,2)</math>
==Proof of NP-hardness==
Line 62:
'''Mixed-integer linear programming''' ('''MILP''') involves problems in which only some of the variables, <math>x_i</math>, are constrained to be integers, while other variables are allowed to be non-integers.
'''
:<math display=block>
x = x_1+2x_2+4x_3+\cdots+2^{\lfloor \log_2U\rfloor}x_{\lfloor \log_2U\rfloor+1}.
Line 75:
===Production planning===
Mixed-integer programming has many applications in industrial productions, including job-shop modelling. One important example happens in agricultural [[production planning]] and involves determining production yield for several crops that can share resources (e.g.
===Scheduling===
These problems involve service and vehicle scheduling in transportation networks. For example, a problem may involve assigning buses or subways to individual routes so that a timetable can be met, and also to equip them with drivers. Here binary decision variables indicate whether a bus or subway is assigned to a route and whether a driver is assigned to a particular train or subway. The
===Territorial partitioning===
Territorial partitioning or districting
===Telecommunications networks===
The goal of these problems is to design a network of lines to install so that a predefined set of communication requirements are met and the total cost of the network is minimal.<ref>{{cite web|last1=Borndörfer|first1=R.|last2=Grötschel|first2=M.|author2-link= Martin Grötschel |title=Designing telecommunication networks by integer programming|url=http://www.zib.de/groetschel/teaching/SS2012/120503Vorlesung-DesigningTelcomNetworks-reduced.pdf|year=2012}}</ref> This requires optimizing both the topology of the network along with
===Cellular networks===
Line 120:
===Exact algorithms===
When the matrix <math>A</math> is not totally unimodular, there are a variety of algorithms that can be used to solve integer linear programs exactly. One class of algorithms are [[Cutting-plane method|cutting plane methods]], which work by solving the LP relaxation and then adding linear constraints that drive the solution towards being integer without excluding any integer feasible points.
Another class of algorithms are variants of the [[branch and bound]] method. For example, the [[branch and cut]] method that combines both branch and bound and cutting plane methods. Branch and bound algorithms have a number of advantages over algorithms that only use cutting planes. One advantage is that the algorithms can be terminated early and as long as at least one integral solution has been found, a feasible, although not necessarily optimal, solution can be returned. Further, the solutions of the LP relaxations can be used to provide a worst-case estimate of how far from optimality the returned solution is. Finally, branch and bound methods can be used to return multiple optimal solutions.
Line 149:
* The original algorithm of Lenstra<ref name=":0" /> had run-time <math>2^{O(n^3)}\cdot (m\cdot \log V)^{O(1)}</math>.
* Kannan<ref>{{Cite journal|last=Kannan|first=Ravi|date=1987-08-01|title=Minkowski's Convex Body Theorem and Integer Programming|url=https://pubsonline.informs.org/doi/abs/10.1287/moor.12.3.415|journal=Mathematics of Operations Research|volume=12|issue=3|pages=415–440|doi=10.1287/moor.12.3.415|s2cid=495512 |issn=0364-765X}}</ref> presented an improved algorithm with run-time <math>n^{O(n)}\cdot (m\cdot \log V)^{O(1)}</math>.<ref>{{Cite journal|last1=Goemans|first1=Michel X.|author1link = Michel Goemans|last2=Rothvoss|first2=Thomas|date=2020-11-07|title=Polynomiality for Bin Packing with a Constant Number of Item Types|journal=[[Journal of the ACM]]|volume=67|issue=6|pages=38:1–38:21|doi=10.1145/3421750|hdl=1721.1/92865 |s2cid=227154747 |issn=0004-5411|doi-access=free}}</ref>
* Frank and Tardos<ref>{{Cite journal|last1=Frank|first1=András|last2=Tardos|first2=Éva|date=1987-03-01|title=An application of simultaneous diophantine approximation in combinatorial optimization|url=https://doi.org/10.1007/BF02579200|journal=Combinatorica|language=en|volume=7|issue=1|pages=49–65|doi=10.1007/BF02579200|s2cid=45585308|issn=1439-6912}}</ref> presented an improved algorithm with run-time <math>n^{2.5 n} \cdot 2^{O(n)} \cdot (m\cdot \log V)^{O(1)}</math>.<ref>{{Cite journal|last1=Bliem|first1=Bernhard|last2=Bredereck|first2=Robert|last3=Niedermeier|first3=Rolf|author3-link=Rolf Niedermeier|date=2016-07-09|title=Complexity of efficient and envy-free resource allocation: few agents, resources, or utility levels|url=https://dl.acm.org/doi/abs/10.5555/3060621.3060636|journal=Proceedings of the Twenty-Fifth [[International Joint Conference on Artificial Intelligence]]|series=IJCAI'16|___location=New York, New York, USA|publisher=AAAI Press|pages=102–108|isbn=978-1-57735-770-4}}</ref><ref>{{Cite book|last1=Bredereck|first1=Robert|last2=Kaczmarczyk|first2=Andrzej|last3=Knop|first3=Dušan|last4=Niedermeier|first4=Rolf|title=Proceedings of the 2019 ACM Conference on Economics and Computation |chapter=High-Multiplicity Fair Allocation: Lenstra Empowered by N-fold Integer Programming |date=2019-06-17|chapter-url=https://doi.org/10.1145/3328526.3329649|series=EC '19|___location=Phoenix, AZ, USA|publisher=Association for Computing Machinery|pages=505–523|doi=10.1145/3328526.3329649|isbn=978-1-4503-6792-9|s2cid=195298520}}</ref>{{Rp|Prop.8}}
* Dadush<ref>Dadush, Daniel (2012-06-14). [https://homepages.cwi.nl/~dadush/papers/dadush-thesis.pdf "Integer Programming, Lattice Algorithms, and Deterministic Volume Estimation].</ref> presented an improved algorithm with run-time <math>n^n \cdot 2^{O(n)} \cdot (m \cdot \log V)^{O(1)}</math>.
Line 169:
== Sparse integer programming ==
It is often the case that the matrix <math>A</math>
==See also==
|