Content deleted Content added
Citation bot (talk | contribs) Add: doi-access. | Use this bot. Report bugs. | Suggested by Corvus florensis | #UCB_webform 1972/2500 |
Add short description. Rm sentence-fragment periods per MOS:CAPTION. |
||
Line 1:
{{Short description|An algorithm for inverting a matrix}}
{{Technical|date=August 2021}}
[[File:
The method has been extended to the '''Generalized Rybicki-Press algorithm''' for inverting matrices with entries of the form <math>A(i,j) = \sum_{k=1}^p a_k \exp(-\beta_k \vert t_i - t_j \vert)</math>.<ref name=":3">{{Cite journal|last=Ambikasaran|first=Sivaram|date=2015-12-01|title=Generalized Rybicki Press algorithm|journal=Numerical Linear Algebra with Applications|language=en|volume=22|issue=6|pages=1102–1114|doi=10.1002/nla.2003|issn=1099-1506|arxiv=1409.7852|s2cid=1627477}}</ref> The key observation in the Generalized Rybicki-Press (GRP) algorithm is that the matrix <math>A</math> is a [[semi-separable matrix]] with rank <math>p</math> (that is, a matrix whose upper half, not including the main diagonal, is that of some matrix with [[matrix rank]] <math>p</math> and whose lower half is also that of some possibly different rank <math>p</math> matrix<ref name=":3" />) and so can be embedded into a larger [[band matrix]] (see figure on the right), whose sparsity structure can be leveraged to reduce the computational complexity. As the matrix <math>A \in \mathbb{R}^{n\times n}</math> has a semi-separable rank of <math>p</math>, the [[computational complexity]] of solving the linear system <math>Ax=b</math> or of calculating the determinant of the matrix <math>A</math> scales as <math>\mathcal{O}\left(p^2n \right)</math>, thereby making it attractive for large matrices.<ref name=":3" />
Line 9 ⟶ 10:
==See also==
* [[Invertible matrix]]
* [[Matrix decomposition]]
* [[Multidimensional signal processing]]
* [[System of linear equations]]
==References==
|