Diffusionless transformations, also referred to as displacive transformations, are solid-state changes in the crystal structure that dodoes not rely on the diffusion of atoms over long distances. Instead, they occur due to coordinated shifts in atomic positions, where atoms move by a distance less than the span between neighboring atoms while maintaining their relative arrangement. An illustrative instance of this is the martensitic transformation observed in steel. The term "martensite" was initially used to designate the hard and finely dispersed constituent that forms in rapidly cooled steels. Subsequently, it was discovered that other materials, including non-ferrous alloys and ceramics, can undergo diffusionless transformations as well. As a result, the term "martensite" has taken on a more inclusive meaning to encompass the resulting product of such transformations. With diffusionless transformations, there is some form of cooperative, homogeneous movement that results in a change to the [[crystal structure]] during a [[Phase transition|phase change]]. These movements are small, usually less than their interatomic distances, and the neighbors of an atom remain close. The systematic movement of large numbers of atoms led to some to refer to these as ''military'' transformations in contrast to ''civilian'' diffusion-based phase changes, initially by [[Frederick Charles Frank]] and [[John Wyrill Christian]].<ref>D.A. Porter and K.E. Easterling, Phase transformations in metals and alloys, ''Chapman & Hall'', 1992, p.172 {{ISBN|0-412-45030-5}}</ref><ref>{{cite journal |author=西山 善次 |date=1967 |title=マルテンサイトの格子欠陥 |script-title=ja:... |url=https://www.jstage.jst.go.jp/article/materia1962/6/7/6_7_497/_article/-char/ja |url-status=live |journal=日本金属学会会報 |language=Japanese |publisher=日本金属学会 |volume=6 |issue=7 |pages=497–506 |doi=10.2320/materia1962.6.497 |issn=1884-5835 |archive-url=https://web.archive.org/web/20230617075122/https://www.jstage.jst.go.jp/article/materia1962/6/7/6_7_497/_article/-char/ja |archive-date=2023-06-17 |via=J-STAGE |doi-access=free}}</ref>
The most commonly encountered transformation of this type is the [[Adolf Martens|martensitic]] transformation which, while probably the most studied, is only one subset of non-diffusional transformations. The martensitic transformation in [[steel]] represents the most economically significant example of this category of phase transformations. However, an increasing number of alternatives, such as [[shape memory alloy]]s, are becoming more important as well.