Content deleted Content added
→GraphSLAM: optim |
→Algorithms: MCL |
||
Line 25:
== Algorithms ==
Statistical techniques used to approximate the above equations include [[Kalman filter]]s and [[particle filter]]s (the algorithm behind Monte Carlo Localization). They provide an estimation of the [[posterior probability distribution]] for the pose of the robot and for the parameters of the map. Methods which conservatively approximate the above model using [[covariance intersection]] are able to avoid reliance on statistical independence assumptions to reduce algorithmic complexity for large-scale applications.<ref>{{cite conference|last1= Julier|first1=S.|last2=Uhlmann|first2=J.|title=Building a Million-Beacon Map.|conference=Proceedings of ISAM Conference on Intelligent Systems for Manufacturing|year=2001|doi=10.1117/12.444158}}</ref> Other approximation methods achieve improved computational efficiency by using simple bounded-region representations of uncertainty.<ref>{{cite conference|last1= Csorba|first1=M.|last2=Uhlmann|first2=J.|title=A Suboptimal Algorithm for Automatic Map Building.|conference=Proceedings of the 1997 American Control Conference|year=1997|doi=10.1109/ACC.1997.611857}}</ref>
[[Set estimation|Set-membership techniques]] are mainly based on [[interval propagation|interval constraint propagation]].<ref>
|