Content deleted Content added
Added more bibliographical information for the Wolfram MathWorld source |
Citation bot (talk | contribs) Alter: pages. Add: id. Formatted dashes. | Use this bot. Report bugs. | Suggested by Лисан аль-Гаиб | #UCB_webform 279/544 |
||
Line 5:
{{AfC submission|t||ts=20230126112013|u=MtPenguinMonster|ns=118|demo=}}<!-- Important, do not remove this line before article has been created. -->
In [[numerical linear algebra]], the '''conjugate gradient squared method (CGS)''' is an [[iterative method|iterative]] algorithm for solving systems of linear equations of the form <math>Ax = b</math>, particularly in cases where computing <math>A^T</math> is impractical.<ref>{{cite web|title=Conjugate Gradient Squared Method|author1=Noel Black|author2=Shirley Moore|publisher=[[MathWorld|Wolfram Mathworld]]|url=https://mathworld.wolfram.com/ConjugateGradientSquaredMethod.html}}</ref> The CGS method was developed as an improvement to the [[Biconjugate gradient method]].<ref>{{cite web|title=cgs|author=Mathworks|url=https://au.mathworks.com/help/matlab/ref/cgs.html}}</ref><ref>{{cite book|author=[[Henk van der Vorst]]|title=Iterative Krylov Methods for Large Linear Systems|chapter=Bi-Conjugate Gradients|year=2003|publisher=Cambridge University Press |isbn=0-521-81828-1}}</ref><ref>{{cite journal|title=CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems|author=Peter Sonneveld|journal=SIAM Journal on Scientific and Statistical Computing|volume=10|issue=1|pages=
== The Algorithm ==
|