Content deleted Content added
No edit summary |
m link [mM]emory footprint |
||
Line 56:
==Compile-time code optimization==
{{see also|Compile-time function execution}}
The factorial example above is one example of compile-time code optimization in that all factorials used by the program are pre-compiled and injected as numeric constants at compilation, saving both run-time overhead and [[memory footprint]]. It is, however, a relatively minor optimization.
As another, more significant, example of compile-time [[loop unrolling]], template metaprogramming can be used to create length-''n'' vector classes (where ''n'' is known at compile time). The benefit over a more traditional length-''n'' vector is that the loops can be unrolled, resulting in very optimized code. As an example, consider the addition operator. A length-''n'' vector addition might be written as
|