Convex optimization: Difference between revisions

Content deleted Content added
Citation bot (talk | contribs)
Removed parameters. | Use this bot. Report bugs. | #UCB_CommandLine
Issues appear to have been addressed
Line 1:
{{short description|Subfield of mathematical optimization}}
{{multiple issues|
{{Technical|date=June 2013}}
{{More footnotes needed|date=February 2012}}
}}
 
'''Convex optimization''' is a subfield of [[mathematical optimization]] that studies the problem of minimizing [[convex function]]s over [[convex set]]s (or, equivalently, maximizing [[concave functions]] over convex sets). Many classes of convex optimization problems admit polynomial-time algorithms,<ref name="Nesterov 1994">{{harvnb|Nesterov|Nemirovskii|1994}}</ref> whereas mathematical optimization is in general [[NP-hard]].<ref>
{{cite journal | last1 = Murty | first1 = Katta | last2 = Kabadi | first2 = Santosh | title = Some NP-complete problems in quadratic and nonlinear programming | journal = Mathematical Programming | volume = 39 | issue = 2 | pages = 117–129 | year = 1987 | doi = 10.1007/BF02592948| hdl = 2027.42/6740 | s2cid = 30500771 | hdl-access = free}}</ref><ref>Sahni, S. "Computationally related problems," in SIAM Journal on Computing, 3, 262--279, 1974.</ref><ref>[https://link.springer.com/article/10.1007/BF00120662 Quadratic programming with one negative eigenvalue is NP-hard], Panos M. Pardalos and Stephen A. Vavasis in ''Journal of Global Optimization'', Volume 1, Number 1, 1991, pg.15-22.</ref>