Content deleted Content added
Citation bot (talk | contribs) Add: doi-access, issue. | Use this bot. Report bugs. | #UCB_CommandLine |
|||
Line 37:
The neural model in DCM for fMRI is a [[Taylor series|Taylor approximation]] that captures the gross causal influences between brain regions and their change due to experimental inputs (see picture). This is coupled with a detailed biophysical model of the generation of the blood oxygen level dependent (BOLD) response and the MRI signal,<ref name="Friston 2003"/> based on the Balloon model of Buxton et al.,<ref>{{Cite journal|last1=Buxton|first1=Richard B.|last2=Wong|first2=Eric C.|last3=Frank|first3=Lawrence R.|date=June 1998|title=Dynamics of blood flow and oxygenation changes during brain activation: The balloon model|journal=Magnetic Resonance in Medicine|volume=39|issue=6|pages=855–864|doi=10.1002/mrm.1910390602|issn=0740-3194|pmid=9621908|s2cid=2002497}}</ref> which was supplemented with a model of neurovascular coupling.<ref>{{Cite journal|last1=Friston|first1=K.J.|last2=Mechelli|first2=A.|last3=Turner|first3=R.|last4=Price|first4=C.J.|date=October 2000|title=Nonlinear Responses in fMRI: The Balloon Model, Volterra Kernels, and Other Hemodynamics|journal=NeuroImage|volume=12|issue=4|pages=466–477|doi=10.1006/nimg.2000.0630|pmid=10988040|s2cid=961661|issn=1053-8119}}</ref><ref>{{Cite journal|last1=Stephan|first1=Klaas Enno|last2=Weiskopf|first2=Nikolaus|last3=Drysdale|first3=Peter M.|last4=Robinson|first4=Peter A.|last5=Friston|first5=Karl J.|date=November 2007|title=Comparing hemodynamic models with DCM|journal=NeuroImage|volume=38|issue=3|pages=387–401|doi=10.1016/j.neuroimage.2007.07.040|pmid=17884583|pmc=2636182|issn=1053-8119}}</ref> Additions to the neural model have included interactions between excitatory and inhibitory neural populations <ref>{{Cite journal|last1=Marreiros|first1=A.C.|last2=Kiebel|first2=S.J.|last3=Friston|first3=K.J.|date=January 2008|title=Dynamic causal modelling for fMRI: A two-state model|journal=NeuroImage|volume=39|issue=1|pages=269–278|doi=10.1016/j.neuroimage.2007.08.019|pmid=17936017|issn=1053-8119|citeseerx=10.1.1.160.1281|s2cid=9731930}}</ref> and non-linear influences of neural populations on the coupling between other populations.<ref name="Stephan 2008">{{Cite journal|last1=Stephan|first1=Klaas Enno|last2=Kasper|first2=Lars|last3=Harrison|first3=Lee M.|last4=Daunizeau|first4=Jean|last5=den Ouden|first5=Hanneke E.M.|last6=Breakspear|first6=Michael|last7=Friston|first7=Karl J.|date=August 2008|title=Nonlinear dynamic causal models for fMRI|journal=NeuroImage|volume=42|issue=2|pages=649–662|doi=10.1016/j.neuroimage.2008.04.262|issn=1053-8119|pmc=2636907|pmid=18565765}}</ref>
DCM for resting state studies was first introduced in Stochastic DCM,<ref>{{Cite journal|date=2011-09-15|title=Generalised filtering and stochastic DCM for fMRI|url= https://www.zora.uzh.ch/id/eprint/49235/1/Li_Neuroimage_2011.pdf|journal=NeuroImage|volume=58|issue=2|pages=442–457|doi=10.1016/j.neuroimage.2011.01.085|pmid=21310247|issn=1053-8119|last1=Li|first1=Baojuan|last2=Daunizeau|first2=Jean|last3=Stephan|first3=Klaas E|last4=Penny|first4=Will|last5=Hu|first5=Dewen|last6=Friston|first6=Karl|s2cid=13956458}}</ref> which estimates both neural fluctuations and connectivity parameters in the time ___domain, using [[Generalized filtering|Generalized Filtering]]. A more efficient scheme for resting state data was subsequently introduced which operates in the frequency ___domain, called DCM for Cross-Spectral Density (CSD).<ref>{{Cite journal|last1=Friston|first1=Karl J.|last2=Kahan|first2=Joshua|last3=Biswal|first3=Bharat|last4=Razi|first4=Adeel|date=July 2014|title=A DCM for resting state fMRI|journal=NeuroImage|volume=94|issue=100 |pages=396–407|doi=10.1016/j.neuroimage.2013.12.009|pmid=24345387|pmc=4073651|issn=1053-8119}}</ref><ref>{{Cite journal|last1=Razi|first1=Adeel|last2=Kahan|first2=Joshua|last3=Rees|first3=Geraint|last4=Friston|first4=Karl J.|date=February 2015|title=Construct validation of a DCM for resting state fMRI|journal=NeuroImage|volume=106|pages=1–14|doi=10.1016/j.neuroimage.2014.11.027|issn=1053-8119|pmc=4295921|pmid=25463471}}</ref> Both of these can be applied to large-scale brain networks by constraining the connectivity parameters based on the functional connectivity.<ref>{{Cite journal|last1=Seghier|first1=Mohamed L.|last2=Friston|first2=Karl J.|date=March 2013|title=Network discovery with large DCMs|journal=NeuroImage|volume=68|pages=181–191|doi=10.1016/j.neuroimage.2012.12.005|issn=1053-8119|pmc=3566585|pmid=23246991}}</ref><ref name="Razi 2017">{{Cite journal|last1=Razi|first1=Adeel|last2=Seghier|first2=Mohamed L.|last3=Zhou|first3=Yuan|last4=McColgan|first4=Peter|last5=Zeidman|first5=Peter|last6=Park|first6=Hae-Jeong|last7=Sporns|first7=Olaf|last8=Rees|first8=Geraint|last9=Friston|first9=Karl J.|date=October 2017|title=Large-scale DCMs for resting-state fMRI|journal=Network Neuroscience|volume=1|issue=3|pages=222–241|doi=10.1162/netn_a_00015|issn=2472-1751|pmc=5796644|pmid=29400357}}</ref> Another recent development for resting state analysis is Regression DCM<ref>{{Cite journal|last1=Frässle|first1=Stefan|last2=Lomakina|first2=Ekaterina I.|last3=Razi|first3=Adeel|last4=Friston|first4=Karl J.|last5=Buhmann|first5=Joachim M.|last6=Stephan|first6=Klaas E.|date=July 2017|title=Regression DCM for fMRI|journal=NeuroImage|volume=155|pages=406–421|doi=10.1016/j.neuroimage.2017.02.090|pmid=28259780|issn=1053-8119|doi-access=free}}</ref> implemented in the Tapas software collection (see [[#Software implementations|Software implementations]]). Regression DCM operates in the frequency ___domain, but linearizes the model under certain simplifications, such as having a fixed (canonical) haemodynamic response function. The enables rapid estimation of large-scale brain networks.
[[File:DCM for ERP and CMC.svg|thumb|Models of the cortical column used in EEG/MEG/LFP analysis. Self-connections on each population are present but not shown for clarity. Left: DCM for ERP. Right: Canonical Microcircuit (CMC). 1=spiny stellate cells (layer IV), 2=inhibitory interneurons, 3=(deep) pyramidal cells and 4=superficial pyramidal cells.]]
Line 79:
* Face validity establishes whether the parameters of a model can be recovered from simulated data. This is usually performed alongside the development of each new model (E.g.<ref name="Friston 2003" /><ref name="Stephan 2008" />).
* Construct validity assesses consistency with other analytical methods. For example, DCM has been compared with Structural Equation Modelling <ref>{{Cite journal|last1=Penny|first1=W.D.|last2=Stephan|first2=K.E.|last3=Mechelli|first3=A.|last4=Friston|first4=K.J.|date=January 2004|title=Modelling functional integration: a comparison of structural equation and dynamic causal models|journal=NeuroImage|volume=23|pages=S264–S274|doi=10.1016/j.neuroimage.2004.07.041|pmid=15501096|issn=1053-8119|citeseerx=10.1.1.160.3141|s2cid=8993497}}</ref> and other neurobiological computational models.<ref>{{Cite journal|last1=Lee|first1=Lucy|last2=Friston|first2=Karl|last3=Horwitz|first3=Barry|date=May 2006|title=Large-scale neural models and dynamic causal modelling|journal=NeuroImage|volume=30|issue=4|pages=1243–1254|doi=10.1016/j.neuroimage.2005.11.007|pmid=16387513|s2cid=19003382|issn=1053-8119}}</ref>
* Predictive validity assesses the ability to predict known or expected effects. This has included testing against iEEG / EEG / stimulation <ref>{{Cite journal|last1=David|first1=Olivier|last2=Guillemain|first2=Isabelle|last3=Saillet|first3=Sandrine|last4=Reyt|first4=Sebastien|last5=Deransart|first5=Colin|last6=Segebarth|first6=Christoph|last7=Depaulis|first7=Antoine|date=2008-12-23|title=Identifying Neural Drivers with Functional MRI: An Electrophysiological Validation|journal=PLOS Biology|volume=6|issue=12|pages=2683–97|doi=10.1371/journal.pbio.0060315|issn=1545-7885|pmc=2605917|pmid=19108604 |doi-access=free }}</ref><ref>{{Cite journal|last1=David|first1=Olivier|last2=Woźniak|first2=Agata|last3=Minotti|first3=Lorella|last4=Kahane|first4=Philippe|date=February 2008|title=Preictal short-term plasticity induced by intracerebral 1 Hz stimulation|journal=NeuroImage|volume=39|issue=4|pages=1633–1646|doi=10.1016/j.neuroimage.2007.11.005|pmid=18155929|s2cid=3415312|issn=1053-8119|url=https://www.hal.inserm.fr/inserm-00381199/file/David_Manuscript.pdf}}</ref><ref>{{Cite journal|last1=Reyt|first1=Sébastien|last2=Picq|first2=Chloé|last3=Sinniger|first3=Valérie|last4=Clarençon|first4=Didier|last5=Bonaz|first5=Bruno|last6=David|first6=Olivier|date=October 2010|title=Dynamic Causal Modelling and physiological confounds: A functional MRI study of vagus nerve stimulation|journal=NeuroImage|volume=52|issue=4|pages=1456–1464|doi=10.1016/j.neuroimage.2010.05.021|pmid=20472074|s2cid=1668349|issn=1053-8119|url=https://www.hal.inserm.fr/inserm-00498678/file/Manuscript_Author.pdf}}</ref><ref>{{Cite journal|last1=Daunizeau|first1=J.|last2=Lemieux|first2=L.|last3=Vaudano|first3=A. E.|last4=Friston|first4=K. J.|last5=Stephan|first5=K. E.|date=2013|title=An electrophysiological validation of stochastic DCM for fMRI|journal=Frontiers in Computational Neuroscience|volume=6|pages=103|doi=10.3389/fncom.2012.00103|pmid=23346055|pmc=3548242|issn=1662-5188|doi-access=free}}</ref> and against known pharmacological treatments.<ref>{{Cite journal|last1=Moran|first1=Rosalyn J.|author1-link=Rosalyn Moran|last2=Symmonds|first2=Mkael|last3=Stephan|first3=Klaas E.|last4=Friston|first4=Karl J.|last5=Dolan|first5=Raymond J.|date=August 2011|title=An In Vivo Assay of Synaptic Function Mediating Human Cognition|journal=Current Biology|volume=21|issue=15|pages=1320–1325|doi=10.1016/j.cub.2011.06.053|pmid=21802302|pmc=3153654|issn=0960-9822}}</ref><ref>{{Cite journal|last1=Moran|first1=Rosalyn J.|author1-link=Rosalyn Moran|last2=Jung|first2=Fabienne|last3=Kumagai|first3=Tetsuya|last4=Endepols|first4=Heike|last5=Graf|first5=Rudolf|last6=Dolan|first6=Raymond J.|last7=Friston|first7=Karl J.|last8=Stephan|first8=Klaas E.|last9=Tittgemeyer|first9=Marc|date=2011-08-02|title=Dynamic Causal Models and Physiological Inference: A Validation Study Using Isoflurane Anaesthesia in Rodents|journal=PLOS ONE|volume=6|issue=8|pages=e22790|doi=10.1371/journal.pone.0022790|pmid=21829652|pmc=3149050|bibcode=2011PLoSO...622790M|issn=1932-6203|doi-access=free}}</ref>
== Limitations / drawbacks ==
|