In [[classical mechanics]], the '''Euler acceleration''' (named for [[Leonhard Euler]]), also known as '''azimuthal acceleration'''<ref name=Morin>{{cite book |author=David Morin |url=https://archive.org/details/introductiontocl00mori |url-access=registration |quote=acceleration azimuthal Morin. |title=Introduction to classical mechanics: with problems and solutions |page= [https://archive.org/details/introductiontocl00mori/page/469 469] |isbn= 978-0-521-87622-3 |date=2008 |publisher=Cambridge University Press}}</ref> or '''transverse acceleration'''<ref name=Fowles>{{cite book |author=Grant R. Fowles|author2=George L. Cassiday|name-list-style=amp|title=Analytical Mechanics|edition=6th|page=178|date=1999|publisher=Harcourt College Publishers}}</ref> is an [[acceleration]] that appears when a non-uniformly rotating reference frame is used for analysis of motion and there is variation in the [[angular velocity]] of the [[frame of reference|reference frame]]'s axis. This article is restricted to a frame of reference that rotates about a fixed axis.
The '''Euler force''' is a [[fictitious force]] on a body that is related to the Euler acceleration by ''' ''F'' ''' = ''m'''a''''', where ''' ''a'' ''' is the Euler acceleration and ''m'' is the mass of the body.<ref name=Battin>{{cite book |title=An introduction to the mathematics and methods of astrodynamics |page=102 |author= Richard H Battin |url=https://books.google.com/books?id=OjH7aVhiGdcC&q=%22Euler+acceleration%22&pg=PA102
|isbn=1-56347-342-9 |date=1999 |publisher=[[American Institute of Aeronautics and Astronautics]] |___location=Reston, VA }}</ref><ref>{{cite book |title=Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems |author=Jerrold E. Marsden |author2=Tudor S. Ratiu |isbn=0-387-98643-X |date=1999 |publisher=Springer |page=251 |url=https://books.google.com/books?id=I2gH9ZIs-3AC&pg=PP1}}</ref>