Content deleted Content added
m Disambiguating links to Parametrization (help needed) using DisamAssist. |
m Disambiguating links to Parametrization (link changed to Parametrization (atmospheric modeling)) using DisamAssist. |
||
Line 38:
[[File:GoldenMedows.jpg|thumb|right|Field of [[cumulus cloud]]s, which are parameterized since they are too small to be explicitly included within numerical weather prediction]]
{{Main|Parametrization (climate)}}
Some meteorological processes are too small-scale or too complex to be explicitly included in numerical weather prediction models. ''[[Parametrization (atmospheric modeling)|Parameterization]]
The amount of solar radiation reaching the ground, as well as the formation of cloud droplets occur on the molecular scale, and so they must be parameterized before they can be included in the model. [[Drag (physics)|Atmospheric drag]] produced by mountains must also be parameterized, as the limitations in the resolution of [[elevation]] contours produce significant underestimates of the drag.<ref>{{cite book|url=https://books.google.com/books?id=lMXSpRwKNO8C&pg=PA56|title=Parameterization schemes: keys to understanding numerical weather prediction models|author=Stensrud, David J.|page=6|year=2007|publisher=Cambridge University Press|isbn=978-0-521-86540-1}}</ref> This method of parameterization is also done for the surface flux of energy between the ocean and the atmosphere, in order to determine realistic sea surface temperatures and type of sea ice found near the ocean's surface.<ref>{{cite book|page=188|title=A climate modelling primer|author1=McGuffie, K. |author2=A. Henderson-Sellers |name-list-style=amp |publisher=John Wiley and Sons|year=2005|isbn=978-0-470-85751-9}}</ref> Sun angle as well as the impact of multiple cloud layers is taken into account.<ref>{{cite book|url=https://books.google.com/books?id=vdg5BgBmMkQC&pg=PA226|author1=Melʹnikova, Irina N. |author2=Alexander V. Vasilyev |name-list-style=amp |pages=226–228|title=Short-wave solar radiation in the earth's atmosphere: calculation, observation, interpretation|year=2005|publisher=Springer|isbn=978-3-540-21452-6}}</ref> Soil type, vegetation type, and soil moisture all determine how much radiation goes into warming and how much moisture is drawn up into the adjacent atmosphere, and thus it is important to parameterize their contribution to these processes.<ref>{{cite book|url=https://books.google.com/books?id=lMXSpRwKNO8C&pg=PA56|title=Parameterization schemes: keys to understanding numerical weather prediction models|author=Stensrud, David J.|pages=12–14|year=2007|publisher=Cambridge University Press|isbn=978-0-521-86540-1}}</ref> Within air quality models, parameterizations take into account atmospheric emissions from multiple relatively tiny sources (e.g. roads, fields, factories) within specific grid boxes.<ref>{{cite book|url=https://books.google.com/books?id=wh-Xf0WZQlMC&pg=PA11|pages=11–12|title=Meteorological and Air Quality Models for Urban Areas|author=Baklanov, Alexander, Sue Grimmond, Alexander Mahura|access-date=2011-02-24|year=2009|publisher=Springer|isbn=978-3-642-00297-7}}</ref>
|