Content deleted Content added
Add older reference to denoising autoencoder. |
|||
Line 76:
====Denoising autoencoder (DAE)====
Denoising autoencoders (DAE) try to achieve a ''good'' representation by changing the ''reconstruction criterion''.<ref name=":0" /><ref name=":4" />
A DAE, orginally called a "robust autoassociative network"<ref name=":13"/>, is
Given a task <math>(\mu_{ref}, d)</math>, the problem of training a DAE is the optimization problem:<math display="block">\min_{\theta, \phi}L(\theta, \phi) = \mathbb \mathbb E_{x\sim \mu_X, T\sim\mu_T}[d(x, (D_\theta\circ E_\phi \circ T)(x))]</math>That is, the optimal DAE should take any noisy message and attempt to recover the original message without noise, thus the name "denoising"''.''
|