Content deleted Content added
caps. link. |
mNo edit summary |
||
Line 9:
Decision trees are among the most popular machine learning algorithms given their intelligibility and simplicity.<ref>{{Cite journal|last1=Wu|first1=Xindong|last2=Kumar|first2=Vipin|last3=Ross Quinlan|first3=J.|last4=Ghosh|first4=Joydeep|last5=Yang|first5=Qiang|last6=Motoda|first6=Hiroshi|last7=McLachlan|first7=Geoffrey J.|last8=Ng|first8=Angus|last9=Liu|first9=Bing|last10=Yu|first10=Philip S.|last11=Zhou|first11=Zhi-Hua|date=2008-01-01|title=Top 10 algorithms in data mining|journal=Knowledge and Information Systems|language=en|volume=14|issue=1|pages=1–37|doi=10.1007/s10115-007-0114-2|s2cid=2367747|issn=0219-3116|hdl=10983/15329|hdl-access=free}}</ref>
In decision analysis, a decision tree can be used to visually and explicitly represent decisions and [[decision making]]. In [[data mining]], a decision tree describes data (but the resulting classification tree can be an input for
==General==
|