Diffusionless transformation: Difference between revisions

Content deleted Content added
m Added comma for clarity.
Puurple (talk | contribs)
m links
Line 5:
}}
 
'''Diffusionless transformations''', also referred to as displacive transformations, are solid-state changes in the [[crystal structure]] that do not rely on the [[diffusion]] of atoms over long distances. Instead, they occur due to coordinated shifts in atomic positions, where atoms move by a distance less than the span between neighboring atoms while maintaining their relative arrangement. An illustrative instance of this is the martensitic transformation observed in steel. The term "[[martensite]]" was initially used to designate the hard and finely dispersed constituent that forms in rapidly cooled steels. Subsequently, it was discovered that other materials, including non-ferrous alloys and ceramics, can undergo diffusionless transformations as well. As a result, the term "martensite" has taken on a more inclusive meaning to encompass the resulting product of such transformations. With diffusionless transformations, there is some form of cooperative, homogeneous movement that results in a change to the [[crystal structure]] during a [[Phase transition|phase change]]. These movements are small, usually less than their interatomic distances, and the neighbors of an atom remain close. The systematic movement of large numbers of atoms led to some to refer to these as ''military'' transformations in contrast to ''civilian'' diffusion-based phase changes, initially by [[Frederick Charles Frank]] and [[John Wyrill Christian]].<ref>D.A. Porter and K.E. Easterling, Phase transformations in metals and alloys, ''Chapman & Hall'', 1992, p.172 {{ISBN|0-412-45030-5}}</ref><ref>{{cite journal |author=西山 善次 |date=1967 |title=マルテンサイトの格子欠陥 |script-title=ja:... |url=https://www.jstage.jst.go.jp/article/materia1962/6/7/6_7_497/_article/-char/ja |url-status=live |journal=日本金属学会会報 |language=Japanese |publisher=日本金属学会 |volume=6 |issue=7 |pages=497–506 |doi=10.2320/materia1962.6.497 |issn=1884-5835 |archive-url=https://web.archive.org/web/20230617075122/https://www.jstage.jst.go.jp/article/materia1962/6/7/6_7_497/_article/-char/ja |archive-date=2023-06-17 |via=J-STAGE |doi-access=free}}</ref>
 
The most commonly encountered transformation of this type is the [[Adolf Martens|martensitic]] transformation which, while probably the most studied, is only one subset of non-diffusional transformations. The martensitic transformation in [[steel]] represents the most economically significant example of this category of phase transformations. However, an increasing number of alternatives, such as [[shape memory alloy]]s, are becoming more important as well.
Line 24:
Shuffles, as the name suggests, involve the small movement of atoms within the unit cell. As a result, pure shuffles do not normally result in a shape change of the unit cell - only its symmetry and structure.
 
[[Phase transition|Phase transformations]] normally result in the creation of an interface between the transformed and parent material. The energy required to generate this new interface will depend on its nature - essentially how well the two structures fit together. An additional energy term occurs if the transformation includes a shape change since, if the new phase is constrained by the surrounding material, this may give rise to [[Elasticity (physics)|elastic]] or [[plastic]] deformation and hence a [[Strain (materials science)|strain]] energy term. The ratio of these [[Interfacial energy|interfacial]] and strain energy terms has a notable effect on the kinetics of the transformation and the morphology of the new phase. Thus, shuffle transformations, where distortions are small, are dominated by interfacial energies and can be usefully separated from lattice-distortive transformations where the strain energy tends to have a greater effect.
 
A subclassification of lattice-distortive displacements can be made by considering the dilutional and shear components of the distortion. In transformations dominated by the shear component, it is possible to find a line in the new phase that is undistorted from the parent phase while all lines are distorted when the dilation is predominant. Shear-dominated transformations can be further classified according to the magnitude of the strain energies involved compared to the innate [[Atom vibrations|vibrations]] of the atoms in the lattice and hence whether the strain energies have a notable influence on the kinetics of the transformation and the morphology of the resulting phase. If the strain energy is a significant factor then the transformations are dubbed ''martensitic'', if not the transformation is referred to as ''quasi-martensitic''.