Content deleted Content added
m Vanderwaalforces moved page Draft:Neural operators to Neural operators: Publishing accepted Articles for creation submission (AFCH 0.9.1) |
Cleaning up accepted Articles for creation submission (AFCH 0.9.1) |
||
Line 1:
{{Short description|Machine learning framework}}
'''Neural operators''' are a class of [[deep learning]] architectures designed to learn maps between infinite-dimensional [[Function space|function spaces]]. Neural operators represent an extension of traditional [[Artificial neural network|artificial neural networks]], marking a departure from the typical focus on learning mappings between finite-dimensional Euclidean spaces or finite sets. Neural operators directly learn [[Operator (mathematics)|operators]] between function spaces; they can receive input functions, and the output function can be evaluated at any discretization.<ref name="NO journal">{{cite journal |last1=Kovachki |first1=Nikola |last2=Li |first2=Zongyi |last3=Liu |first3=Burigede |last4=Azizzadenesheli |first4=Kamyar |last5=Bhattacharya |first5=Kaushik |last6=Stuart |first6=Andrew |last7=Anandkumar |first7=Anima |title=Neural operator: Learning maps between function spaces |journal=Journal of Machine Learning Research |date=2021 |volume=24 |page=1-97 |arxiv=2108.08481 |url=https://www.jmlr.org/papers/volume24/21-1524/21-1524.pdf}}</ref>
Line 73 ⟶ 62:
== References ==
{{reflist}}
|