Content deleted Content added
No edit summary |
|||
Line 29:
Then f is said to be (r, ''l'')-good if
::::• f has degree r + 1,
::::• there exist <math>A_{1}</math> , . . . ,<math>A_{l}</math> distinct subsets of <math>F_{q}</math> such that
:::::::– for any i ∈ {1, . . ., l}, f (<math>A_{i}</math> ) = {<math>t_{i}</math>} for some ti ∈ <math>F_{q}</math> , i.e. f is constant on Ai ,
:::::::– #<math>A_{i}</math> = r + 1,
:::::::– <math>A_{i}</math> ∩ <math>A_{j}</math> = ∅ for any i ≠ j.
We say that {<math>A_{1}</math> , . . . , <math>A_{l}</math>} is a splitting covering for f .
|