Lagrange inversion theorem: Difference between revisions

Content deleted Content added
Sketch of the proof: Fixed a typo (after integration g' becomes g)
Tags: Mobile edit Mobile web edit
Line 51:
By convergence tests, this series is in fact convergent for <math>|z| \leq (p-1)p^{-p/(p-1)},</math> which is also the largest disk in which a local inverse to {{mvar|f}} can be defined.
 
==Derivation==
==Sketch of the proof==
We can use Cauchy Integral theorem:
For simplicity suppose <math>z=0=f(w=0)</math>. We can then compute
:<math>
f^{-1}(z)
\oint_{w=0} \frac{d w}{2\pi i} \frac{1}{f(w) -z}
=
\oint_{w=0} \frac{d w1}{2\pi i} \fracoint_{1f(C)} \frac{f'^{-1}(g(z)\xi)}{\xi w- + O(w^2)z}d\xi
 
</math>
 
and substitute:
 
<math>
\xi=f(\omega)
</math>
 
<math>
d\xi=f'(\omega)d\omega
</math>
 
<math>
f(C)\rightarrow C
</math>
 
<math>
f^{-1}(z)
=
\frac{1}{2\pi i} \oint_{C} \frac{\omega}{f(\omega) - z} f'(\omega) d\omega
\frac{1}{f'(g(z))}
 
</math>
 
using geometric series:
 
<math>
\frac{1}{f(\omega) - z}
=
\frac{1}{f(\omega) - f(a) - z + f(a) }
g'(f(w))
=
\frac{1}{f(\omega) - f(a) }\frac{1}{1 - \frac{z - f(a) }{f(\omega) - f(a)} }
g'(z)
=
.
\frac{1}{f(\omega) - f(a) }\sum_{n=0}^\infty
\left(\frac{z - f(a) }{f(\omega) - f(a)}\right)^{n}
 
 
</math>
 
<math>
If we expand the integrand using the geometric series we get
f^{-1}(z)
:<math>
\oint_{w=0} \frac{d w}{2\pi i} \frac{1}{f(w) -z}
=
\frac{1}{2\pi i}\sum_{n=0}^\infty
\left({z - f(a) }\right)^{n}
z^n
\oint_{w=0C} \frac{d w}{2\pi i} omega f'(\frac{1omega)}{(f(w\omega) - f(a))^{n+1} } d\omega
 
 
 
</math>
 
now by integration by parts: <math>
u
=
\omega
 
 
 
</math> and <math>
dv
=
 
\sum_{n=0}^\infty
\frac{f'(\omega)}{(f(\omega) - f(a))^{n+1} }
z^n
 
\oint_{w=0} \frac{d w}{2\pi i} \frac{1}{w^{n+1}} \left(\frac{w}{f(w)}\right)^{n+1}
 
 
</math> where <math>
uv
=
\frac{-1 }{n} \frac{e^{i\theta} }{(f(e^{i\theta} ) - f(a))^{n}}\Biggl|_{0}^{2\pi }
=
0
 
 
 
 
 
</math> we get:
 
<math>
f^{-1}(z)
=
\frac{1}{2\pi i}\sum_{n=0}^\infty
\frac{({z - f(a) })^{n}}{n}
\oint_{C} \frac{1}{(f(\omega) - f(a))^{n} } d\omega
 
 
 
</math>
 
by residue theorem:
 
<math>
f^{-1}(z)
=
\sum_{n=0}^\infty
\frac{ ({z - f(a) })^{n }}{n!}
\left. \fracoperatorname{d^nRes}{ d w^n}\left(\frac{w1}{(f(w)}\rightomega) - f(a))^{n+1} \right|_{}, w=0}a)
 
,
 
 
 
</math>
where in the last step we used the fact that <math>f(w)</math> has one simple zero.
 
finally:
Finally we can integrate over <math>z</math> taking into account <math>g(0)=0</math>
 
:<math>
<math>
g(z) = \sum_{n=0}^\infty
f^{-1}(z)
\frac{ z^n }{n!}
=
\left. \frac{d^n}{ d w^n}\left(\frac{w}{f(w)}\right)^{n+1} \right|_{w=0}
\sum_{n=0}^\infty
~~\Longrightarrow~~
g\frac{({z) =- \sum_f(a) })^{n=0}^\infty}{n!}
\lim_{ \omega \to a} \frac{d^{n-1}}{d\omega ^{n-1}} \left(\frac{\omega - a }{f(\omega) - f(a)}\right)^{n}
\frac{ z^{n+1} }{(n+1)!}
 
\left. \frac{d^n}{ d w^n}\left(\frac{w}{f(w)}\right)^{n+1} \right|_{w=0}
 
.
 
 
</math>
Upon a redefiniton of the summation index we get the stated formula.
 
==Applications==