Content deleted Content added
→Sketch of the proof: Fixed a typo (after integration g' becomes g) Tags: Mobile edit Mobile web edit |
|||
Line 51:
By convergence tests, this series is in fact convergent for <math>|z| \leq (p-1)p^{-p/(p-1)},</math> which is also the largest disk in which a local inverse to {{mvar|f}} can be defined.
==Derivation==
We can use Cauchy Integral theorem:
f^{-1}(z)
=
</math>
and substitute:
<math>
\xi=f(\omega)
</math>
<math>
d\xi=f'(\omega)d\omega
</math>
<math>
f(C)\rightarrow C
</math>
<math>
f^{-1}(z)
=
\frac{1}{2\pi i} \oint_{C} \frac{\omega}{f(\omega) - z} f'(\omega) d\omega
</math>
using geometric series:
<math>
\frac{1}{f(\omega) - z}
=
\frac{1}{f(\omega) - f(a) - z + f(a) }
=
\frac{1}{f(\omega) - f(a) }\frac{1}{1 - \frac{z - f(a) }{f(\omega) - f(a)} }
=
\frac{1}{f(\omega) - f(a) }\sum_{n=0}^\infty
\left(\frac{z - f(a) }{f(\omega) - f(a)}\right)^{n}
</math>
<math>
f^{-1}(z)
=
\frac{1}{2\pi i}\sum_{n=0}^\infty
\left({z - f(a) }\right)^{n}
\oint_{
</math>
now by integration by parts: <math>
u
=
\omega
</math> and <math>
dv
=
\frac{f'(\omega)}{(f(\omega) - f(a))^{n+1} }
</math> where <math>
uv
=
\frac{-1 }{n} \frac{e^{i\theta} }{(f(e^{i\theta} ) - f(a))^{n}}\Biggl|_{0}^{2\pi }
=
0
</math> we get:
<math>
f^{-1}(z)
=
\frac{1}{2\pi i}\sum_{n=0}^\infty
\frac{({z - f(a) })^{n}}{n}
\oint_{C} \frac{1}{(f(\omega) - f(a))^{n} } d\omega
</math>
by residue theorem:
<math>
f^{-1}(z)
=
\sum_{n=0}^\infty
\frac{
\
</math>
finally:
<math>
f^{-1}(z)
=
\sum_{n=0}^\infty
\lim_{ \omega \to a} \frac{d^{n-1}}{d\omega ^{n-1}} \left(\frac{\omega - a }{f(\omega) - f(a)}\right)^{n}
</math>
==Applications==
|