Lagrange inversion theorem: Difference between revisions

Content deleted Content added
mNo edit summary
Changed rising factorial notation to avoid ambiguity with repeated differentiation
Line 26:
with {{math|1=''f''<sub>0</sub> = 0}} and {{math|''f''<sub>1</sub> ≠ 0}}, then an explicit form of inverse coefficients can be given in term of [[Bell polynomial]]s:<ref>Eqn (11.43), p. 437, C.A. Charalambides, ''Enumerative Combinatorics,'' Chapman & Hall / CRC, 2002</ref>
 
:<math> g_n = \frac{1}{f_1^n} \sum_{k=1}^{n-1} (-1)^k n^\overline{(k)} B_{n-1,k}(\hat{f}_1,\hat{f}_2,\ldots,\hat{f}_{n-k}), \quad n \geq 2, </math>
 
where
Line 32:
\hat{f}_k &= \frac{f_{k+1}}{(k+1)f_{1}}, \\
g_1 &= \frac{1}{f_{1}}, \text{ and} \\
n^{(\overline{k)}} &= n(n+1)\cdots (n+k-1)
\end{align}</math>
is the [[rising factorial]].