Content deleted Content added
Erel Segal (talk | contribs) |
→Special cases: Rename section to a more descriptive title and change formatting from bulleted list to subsections. |
||
Line 159:
:<math>(x,\lambda) \to (x + \alpha p_x, \lambda + \alpha p_\lambda).</math>[[File:Interior_Point_Trajectory.webm|center|thumb|400x400px|Trajectory of the iterates of ''x'' by using the interior point method.]]
== Types of Convex Programs Solvable via Interior-Point Methods ==
Here are some special cases of convex programs
=== [[Linear program]]s ===
* [[Linear programming]]: given a program of the form: '''minimize ''c''<sup>T</sup>''x'' s.t. ''Ax'' ≤ ''b''''', we can apply path-following methods with the barrier <math>b(x) := -\sum_{j=1}^m \ln(b_j - a_j^T x)</math>. It is a self-concordant barrier with parameter ''M''=''m'' (the number of constraints). Therefore, the number of required Newtoמ steps for the path-following method is O(''mn''<sup>2</sup>), and the total runtime complexity is O(''m''<sup>3/2</sup> ''n''<sup>2</sup>).{{Clarify|reason=This is the cost for an approximate solution - not an exact solution. The text does not elaborate on this.|date=November 2023}}▼
Given a program of the form: '''minimize ''c''<sup>T</sup>''x'' s.t. ''Ax'' ≤ ''b''''', we can apply path-following methods with the barrier
* [[Quadratically constrained quadratic program]]<nowiki/>ing: given a program of the form: '''minimize d<sup>T</sup>x s.t. ''f<sub>j</sub>''(''x'') := ''x''<sup>T</sup> ''A<sub>j</sub> x'' + ''b<sub>j</sub>''<sup>T</sup>''x'' + ''c<sub>j</sub>'' ≤ 0 for all j in 1,...,''m''''', where all matrices ''A<sub>j</sub>'' are [[Positive semidefinite matrices|positive-semidefinite]], we can apply path-following methods with the barrier <math>b(x) := -\sum_{j=1}^m \ln(-f_j(x))</math>. It is a self-concordant barrier with parameter ''M''=''m''. The Newton complexity is O(''(m+n)n''<sup>2</sup>), and the total runtime complexity is O(''m''<sup>1/2</sup> (m+n) ''n''<sup>2</sup>).▼
<math display="block">b(x) := -\sum_{j=1}^m \ln(b_j - a_j^T x).</math>
*''Approximation in L<sub>p</sub> norm'': we are given a problem of the form '''minimize sum<sub>''j''</sub> |''v<sub>j</sub>''-''u<sub>j</sub>''<sup>T</sup>''x''|<sup>''p''</sup>''', where 1<''p''<∞, ''u<sub>j</sub>'' are vectors and ''v<sub>j</sub>'' are scalars. After converting to the standard form, we can apply path-following methods with a self-concordant barrier with parameter ''M''=4''m''. The Newton complexity is O(''(m+n)n''<sup>2</sup>), and the total runtime complexity is O(''m''<sup>1/2</sup> (m+n) ''n''<sup>2</sup>). ▼
▲
*[[Geometric programming]]: we are given a problem with objective function '''''f''<sub>0</sub>(x)=sum''<sub>i</sub> c<sub>i0</sub>'' exp(''a<sub>i</sub>''<sup>T</sup>''x'')''', and constraints '''''f<sub>j</sub>''(''x'')=sum''<sub>i</sub> c<sub>ij</sub>'' exp(''a<sub>i</sub>''<sup>T</sup>''x'') ≤ ''d<sub>j</sub>'' for ''j'' in 1,...,''m''''' '''and ''i'' in 1,...,''k'''''. There is a self-concordant barrier with parameter 2''k''+''m''. The path-following method has Newton complexity O(''mk''<sup>2</sup>+''k''<sup>3</sup>+''n''<sup>3</sup>) and total complexity O((''k+m'')<sup>1/2</sup>[''mk''<sup>2</sup>+''k''<sup>3</sup>+''n''<sup>3</sup>]). ▼
===[[Quadratically constrained quadratic program]]s===
▲
===L<sub>p</sub> norm approximation===
▲
===[[Geometric program]]s===
▲
=== [[Semidefinite program]]s ===
Interior point methods can be used to solve semidefinite programs.<ref name=":0" />{{Rp|___location=Sec.11}}
==See also==
|