Content deleted Content added
Line 45:
===Generalizations and non-transistor implementations===
The definition of C-element can be generalized for multiple-valued logic,<ref name="Kim69" /><ref>[https://www.proquest.com/docview/303676273?pq-origsite=gscholar&fromopenview=true J. M. Johnson, Theory and Application of Self-Timed Integrated Systems Using Ternary Logic Elements. PhD thesis. University of California, Santa Barbara. 1989.]</ref> or even for continuous signals:
:<math>\text { if } x_1=x_2=...=x_m, \text { then } y_n=\text{any}(x_1,x_2,...,x_m), \text { else } y_n=y_{n-1}.</math>
For example, the truth table for a balanced ternary C-element with two inputs is
{| class="wikitable" style="text-align: center"
! <math>x_1</math> !! <math>x_2</math> !! <math>y_n</math>
|-
| −1 || −1 || −1
|-
| −1 || 0 || <math>y_{n-1}</math>
|-
| −1 || 1 || <math>y_{n-1}</math>
|-
| 0 || −1 || <math>y_{n-1}</math>
|-
| 0 || 0 || 0
|-
| 0 || 1 || <math>y_{n-1}</math>
|-
| 1 || −1 || <math>y_{n-1}</math>
|-
| 1 || 0 || <math>y_{n-1}</math>
|-
| 1 || 1 || 1
|}
Since the majority gate is a particular case of threshold gate, any of known realizations of threshold gate<ref>V. Beiu, J. M. Quintana, M. J. Avedillo, [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.11.2109&rep=rep1&type=pdf "VLSI implementations of threshold logic – A comprehensive survey"], IEEE Transactions on Neural Networks, vol. 14, no. 5, pp. 1217–1243, 2003.</ref> can in principle be used for building a C-element. In the multiple-valued case, however, connecting the output of majority gate to one or several inputs may have no desirable effect. For example, using the ternary majority function defined as<ref>V. Varshavsky, B. Ovsievich, [http://www.ee.bgu.ac.il/~kushnero/asynchronous/Varshavsky%20and%20Co/Networks%20Composed%20of%20Ternary%20Majority%20Elements.pdf "Networks composed of ternary majority elements"], IEEE Transactions on Electronic Computers, vol. EC-14, no. 5, pp. 730–733, 1965.</ref>
|