Content deleted Content added
m I had author-linked to the wrong Langford |
mNo edit summary |
||
Line 1:
In [[logic]], a '''strict conditional''' (symbol: <math>\Box</math>, or ⥽) is a conditional governed by a [[modal operator]], that is, a [[logical connective]] of [[modal logic]]. It is [[logical equivalence|logically equivalent]] to the [[material conditional]] of [[classical logic]], combined with the [[Logical truth|necessity]] operator from [[modal logic]]. For any two [[proposition]]s ''p'' and ''q'', the [[well-formed formula|formula]] ''p'' → ''q'' says that ''p'' [[material conditional|materially implies]] ''q'' while <math>\Box (p \rightarrow q)</math> says that ''p'' [[logical consequence|strictly implies]] ''q''.<ref>[[Graham Priest]], ''An Introduction to Non-Classical Logic: From if to is'', 2nd ed, Cambridge University Press, 2008, {{ISBN|0-521-85433-4}}, [https://books.google.com/books?id=rMXVbmAw3YwC&pg=PA72 p. 72.]</ref> Strict conditionals are the result of [[C. I. Lewis|Clarence Irving Lewis]]'s attempt to find a conditional for logic that can adequately express [[indicative conditional]]s in natural language.<ref>{{cite book|last1=Lewis|first1=C.I.|author1-link=
==Avoiding paradoxes==
|